Introduction to Data Structures

Data:

Data are simply collection of facts and fiqures. Data are values or set of values. A data
item refers to a single unit of values. Data items that are divided into sub items are group items;
those that are not are called elementary items. For example, a student’s name may be divided
into three sub items — [first name, middle name and last name] but the ID of a student would
normally be treated as a single item.

Student

ID /Nare\ Address Age Gender

First Middle Last

Street Area

In the above example (ID, Age, Gender, First, Middle, Last, Street, Area) are
elementary data items, whereas (Name, Address) are group data items.

R E ST L2 s 2R LRt L s Rttt st s SR R LSS LRSS LR S E RS EE L E £

A bstract Data Type(ADT)

A bstract data types or ADT's are a mathematical specification of a set of data and the set
of operations that can be performed on the data.

Data Structure

Data Structure is a way of collecting and organizing data in such a way that we can
perform operations on these data in an effective way. Data Structures is about rendering data
elements in terms of some relationship, for better organization and storage.

C lassification of data structure

DATA STRUCTURE
Primitive data stroctur Non Primative data structure
. power Linear data structure Non inear data struchure
Float ATy
Character Stack Queue e Graph

Link List
Double

Classfication of data structure

Data structure are Divided into two main categones.

1. Primitive data structure

2. Non-primitive data structure
Primitive data structure:

The primitive data structure can be manipulated or operated by the machine instruction.
There is general, have different representations an different computers.

For example- the integers, floating-point numbers, pointers, string constants, characters etc.
are some of the different primitive data structure in java language, the different primitive data
structure are defined using the data type such as

Int
Char
Float
Double
pointer

etc.

YV VYV YV

Non-primitive data structure

The non-primitive data structures are data structure that cannot be manipulated or
operated directly by the machine instructions. These are more sophisticated data structures.

e

These are derived from the primitive data structure.
For example-A rays, structure, stack, queues, linked list etc.
The Non-Primitive data structure is classified into two categories

Linear Data Structure and
Non Linear Data Structure.

Linear data siruchme:

Collection of nodes which are logically adjacent in which logical adjacency 1is
maintained by pointers

(or)

Linear data structures can be constructed as a continuous arrangement of data elements
in the memory. It can be constructed by using array data type. In the linear Data Structures the

relationship of adjacency is maintained between the Data elements.

Operations applied on linear data structure:
The following list of operations applied on linear data structures
1. Add an element
2. Delete an element
3. Traverse
4. Sort the list of elements
5. Search for a data element
By applying one or more functionalities we can create different types of linear data

structures.
For example Stack, Queue, Tables, List, and Linked Lists.

Non-linear daia shuchne:

Non-linear data structure can be constructed as a collection of randomly distributed set
of data item joined together by using a special pointer (tag). In non-linear Data structure the
relationship of adjacency is not maintained between the Data items.

———————————————————————

Operations applied on non-linear data structures:

The following list of operations applied on non-linear data structures.
1. Add elements

2. Delete elements

3. Display the elements

4. Sort the list of elements

5. Search for a data element

By applying one or more these functionalities we can create different types of data
structures.

For example Tree, Decision free, Graph and Forest.

s s o o ok ook ok ook o o oo o ok o ok oo oo ok o R o o o o s ok o s ok ok ok R s ok o ook ok ok ok ok sk ok ok Rk

Array ADT

Array 1s a container which can hold a fix number of items and these items should be of

the same type. Most of the data structures make use of arrays to implement their algorithms.
Following are the important terms to understand the concept of A rray.

« Element — Each item stored in an array is called an element.

« Index — Each location of an element in an array has a numerical index, which is used to
identify the element.

« Base address-the starting address of the array
« Size and type
Array Representation

Arrays can be declared in various ways in different languages. For example, let's take
Java array declaration.

Initialization

o e Ty e e o L L e e L P
|
|

intal] = newint [12];

SRR e SO SRS O TR - -
Value 1| 2|3|4|5|6|7|8|9|10|11(12
A A A A A A A A A A A
Index alo] af1] a[2] a[3] a[4] a[S] a[e] a[7] a[8] a[2] a[10] a11]11]
System.out.print(a[5]); Output: 6

A s per the above illustration, following are the important points to be considered.
« Index starts with 0.
« Array length is 12 which means it can store 12 elements.

« FEach element can be accessed via its index. For example, we can fetch an element at
index b as 7.

Operations on array

1. Traversing: means to visit all the elements of the array in an operation is called
traversing.

2. Insertion: means to put values into an array

Deletion / Remove: to delete a value from an array.

4. Sorting: Re-arrangement of values in an array in a specific order (A scending /
Descending) is called sorting.

5. Searching: The process of finding the location of a particular element in an array is
called searching. There are two popular searching techniques/mechanisms : Linear search
and binary search

=

R e e R S R L R L e R R

a. Traversing in Linear Array:

It means processing or visiting each element in the array exactly once; Let *A’ 1s an array
stored in the computer’s memory. If we want to display the contents of *A’, it has to be traversed
l.e. by accessing and processing each element of A’ exactly once.

The following is a simple java program to traverse elements of an array.
[* Traverse Armay.java*/
import java.util.Scanner;

class Traverse Array

—_——————————————————

public static void main(String|] args)
{
int n;
Scanner s =new Scannern System.in);
System.out.print("Enter no. of elements you want in array:");
n = s.nextint();
int al] =new int[n]:
System.out.println("Enter all the elements:");
for{inti =0:1 <n; i++)
{

a[i] = s.nextInt();

System.out.print("T he array elements are:");

for{inti =0; 1 <n; i++4)

{
System.out.print(afi] + "\t");
}
}
}
Output:

' C\Program Files (x88)\EditPlus 2\launcher.exe

T o b o o o e S e o o o o e S o e T S e o e e e S e S S G o T S o P e T e

b. Insertion O peration

Insert operation 1s to insert one or more data elements into an array. Based on the
requirement, a new element can be added at the beginning, end, or any given index of array.

10 | @8 (ade] 46 ‘ 50- | ‘6D ‘ 70| 80 | 90 | 100

a[o] af1] a[2] af3] a[4] a[s] a[6] a7 a[8] a[3]

Original Array

Now we need to insert an element at 4% position.

‘ 10 20 ‘ 30 ‘ 40 ‘ 50 60 10 80 ‘ 90 i]DD-‘

I
al0] a[l] a[2] a[3] a[d4] a[5] ale] a[7] a[B8] a[9] a[l0]

=> Elements should be moved to right hand side

‘ 10 ‘ 20 ‘ 30 ‘ 40 | 45 50 G0 70 B0 90 | 100

afo] a[1] a[2] a[3] a[4] a[5] a[e]l a[7] a[8] a[9] a[10]

Array after insertion

The following program illustrates the insertion of an element in an array within the
specified position.

import java.util.Scanner;

class Insert Array

———————————————————

public static void main(String[] args)
{
int n, pos, X;
Scanner s =new Scannern System.in);
System.out.print("Enter no. of elements you want in array:");
n = s.nextint();
int a[] =new int[n+1]:
System.out.println("Enter all the elements:");
for{inti =0:1 <n; i++)
{
a[i] = s.nextInt();
}
System.out.print(" Enter the position where you want to insert element:");
pos = s.nextInt();
System.out.print("Enter the element you want to insert:");
X =s.nextInt():

for{inti =(n-1); i >=(pos-1); i--)

{

ali+1] =ali];
}
alpos-1] =x;

System.out.print("A fter inserting the array elements:");
for(inti =0; 1 <=n; i++)

{

S B

System.out.print(afi] + "\t");

BN Command Prompt

E:\Naresh\DS Programs\Arrays»javac Insert Array.java

E:\Naresh\DS Programs\Arrays>java Insert Array
Enter no. of elements you want i1n array:4

Enter all the elements:

19

20

RIS

42

Enter the position where you want to insert element:2
Enter the element you want to insert:15

After inserting the array elements:1@ 15
E:\Naresh\DS Programs\Arrays>_

o o ok 3 o o o ok ok o of o ok ke ok o ok o ok ok ok o ook o ok sk ok o o o o o o o ok ok o ok ok ok ok ok sk ok ok ok ok ok ok o ok o ok ok o o o ok ok o o o ok o o ok o o o ok ok o ok ok ok

c. Deletion Operation

Deletion refers to removing an existing element from the array and re-organizing all
elements of an array.

The following program illustrates the deletion of an element from an array.
[* Java Program Example - delete Element from Armray */
import java.util.Scanner;
class Delete Array
{
public static void main(String args|])
{

int size, i, del, count=0:

————————————————————————

int arr J;
Scanner scan =new Scanner(System.in);
System.out.print("Enter Array Size : ");
size = scan.nextInt();
arT = new int[size]:
System.out.print("Enter Array Elements : ");
for(1=0; i<size: i++)
{
arr{i] = scan.nextint();
}
System.out.print("Enter Element to be Delete : ");
del = scan.nextInt();
for{1i=0: i<size: i++)
{
if(arr{i] == del)
{
for(int j=1; j<(size-1); j++)
{
art(j] = arr{j+1];
}

count++

break :

}
if(count==0)

TI—

System.out.print("Element Not Found..!!");

else

System.out.print("Element Deleted Successfully..!!");
System.out.print("\nNow the New Array is :\n");
for(i=0: i<(size-1): 1+4)
{

System.out.print(arr{i]+ " ");

e alFas= -u | L1] ™] i T b, T p—— [e

E® Command Prompt

E:\Naresh\DS Programs\Arrays>javac Delete Array.java

E:\Naresh\DS Programs\Arrays>java Delete Array
Enter Array Size : 4

Enter Array Elements

16

20
38
48

Enter Element to be Delete : 20
Element Deleted Successfully..!|

Now the New Array 1is
16 20 40

E:\Naresh\DS Programs\Arrays>

11 |

Searching:
import java.util.Scanner;
class T Array
{
public static void main(String|] args)
{
int n,x,1=0,count=0:
Scanner s = new Scannern(System.in);
System.out.print("Enter no. of elements you want in array:");
n = s.nextint();
System.out.print(“enter the element to search");
x= s.nextInt();
int al] =new int[n]:
System.out.println("Enter all the elements:");
for(i=0;i<n;i++)
{

ali] = s.nextInt():

foni =0:1 <n; i++4)
{
if(afi]==x)

count++

—_—————————————

}

if(count==1)

System.out.print("The element exist in the array ");
else

System.out.print("The element not exist in the array ");

}
}

Search operation is used to find whether the element is present in the array or not.
Output:

C:\Users\meenakshi\Desktop>javac T Array.java
C:\Users\meenakshi\Desktop>java T Array

Enter no. of elements you want in array:5

enter the element to search8

Enter all the elements:

2

D
9
4
7

The element not exist in the array

—

Linked Lists

Introduction to Linked Lists

Linked List is a linear data structure and it is very common data structure which consists of group of nodes in a
sequence which is divided in two parts. Each node consists of its own data and the address of the next node and forms a
chain. Linked Lists are used to create trees and graphs,stacks and queues.

The general structure of linked list is shown in below.

HEADER

Data | ADDR li!‘l'f;'fﬁ Data | ADDR .
o _—,TF,,%& Data ADDR

A dvantages of Linked Lists
« They are a dynamic in nature which allocates the memory when required.
« Insertion and deletion operations can be easily implemented.
» Stacks and queues can be easily executed.
« Linked List reduces the access time.
Disadvantages of Linked Lists
« The memory is wasted as pointers require extra memory for storage.
« No element can be accessed randomly; it has to access each node sequentially.
« Reverse Traversing is difficult in linked list.
Applications of Linked Lists
« Linked lists are used to implement stacks, queues, graphs, etc.
» Linked lists let you insert elements at the beginning and end of the list.

« |In Linked Lists we don’t need to know the size in advance.

Types of Linked Lists
Singly Linked List:
» It 1s linear collection of data elements which are called *Nodes’.

» The elements may or may not be stored in consecutive memory locations. So pointers are used maintain linear
order.
Each node is divided into two parts.

» The NEXT Field of last node contains NULL Value which indicates that it is the end of linked list.
» It is shown below:

Node

head _

<000 » 30 null

2000 3000 \

data field next field Null Value

2. Circular Linked List

» Itissingled linked list in which the next part of the last node contains address of the first node instead of null. Thus
it makes the single linked list as circular singled linked list.
» Itis shown below:

3000 of 30| 1000

2000 3000

data field next field

3. Doubly Linked List or Two-Way Linked List or Two-Way Chain:-

» In it each node is divided into three parts:
o The first part is PREV part. It is previous pointer field. It contains the address of the node which is before
the current node.
o The second part is the DATA part. It contains the information of the element.
o The third part is NEXT part. It is next pointer field. It contains the address of the node which is after the
current node,
The HEAD contains the address of the first node in linked list.
The PREV field of first node and the NEXT field of last node contain NULL value. This shows the end of list on
both sides.

» This list can be traversed in both directions that is forward and backward.
It 1s shown below:

'ltl_-:l' 'ltr':"

'ltr-:l'

Node

head —
nulll 10 |
1000 l
Null Value PREV Field Null Value

data field NEXT Field

4, Circular Double Linked List

» Itis a type of doubled linked list in which the next part of the last node contains address of the first node instead of

null and the previous part of the first node contains the address of the last node instead of null. Thus it makes the
doubled linked list as circular doubled linked list.

» Itis shown below:

first

{3000/ 10 2000 ‘ 11000 15 (3000 2000 |20 1000

sookok sk ok ook sk Rk ok sk kskok ks ko sk ok sk sk ok ik sk sk kool sk stk ok ok sk ko sk ik ok sk ok sk ok ook ok
Single Linked List

» Itis aLinear Data Structure.
» Inwhich each and every element is called as a node and each node contains two parts.
» The first part of the node is called as data part and the second part is address part (next part), this is shown in below.

data next

» The data part contains the actual data element and the address part contains the address part of its next node.
» The general structure of a Single Linked List is as follows.

200 |—>| 20 | null ||

| —»| 10

We can identify the first node of a Single Linked List by using the head pointer. In this, the head pointer always
points to the first node of a Single Linked List. If there are no elements in a Single Linked List the head pointer points to a
null value.

We can also identify the last node of a Single Linked List by using its address part i.e., the address part of the last
node will always be a null value.

In general, we can able to perform the following operations on a Single Linked List.

"‘:I_-:I'

Insertion of a node at beginning.
Insertion of a node at end.
Insertion of a node at middle.
Deletion of a node.

Display.

Y Y

'“lt.;.l' 'ltr':l'

These are explained below.....
A ssume that the newly inserted node is q.

node g=new node();
Inserting a node at beginning

» If the Linked List is empty, then the inserted element will be the starting and the last element. We can check the
following condition to know either the Linked List is empty or not.

: == q_-'
l{f{hea:l null) 10
head

;‘chq: data next
100

Otherwise we can insert the element at beginning of the Linked List as follows....

else
{ —1| 10 | 200 |— 20 | nun
head

q.next=head; data next data next

head=q; qQ—p . : 100 200
} —| 5 100 |-

head
data next
S0

Insertion of a node at end

» If the Linked List is empty, then the inserted element will be the starting and the last element. We can check the
following condition to know either the Linked List is empty or not.

iE[{he- ad==null) 1—> 10 -

head

head=q;
)

data next
100

Otherwise we can move to the last node and we can insert the newly created node at end.

else
{
1=head;
while(rnext!=pull) —| 10 | 200 |[—| 20 | 250
(head 1 —»
data next data mext |, _
=r.next; 100 100 | 25 | null
imﬂ_q_ data next
) .
) 250
Insertion of a node at Middle

» If the Linked List is empty, then the insertion of an element at middle is not possible. We can check the following
condition to know either the Linked List is empty or not.

if(head==null)

System.out.printIn(“Insertion 1s not possible™);
}

Otherwise we can move to the previous node of the position value and we can insert it its specified position as
follows.

else
{
mit 1;
for(i=2:1=pos;i++)
{ —h 10 [200 |—>| 20 |250 |—+»| 30 null
P 1ea —»
]{.:fl:t-lll?:hl_ null) data mext data next data next
1I=r.next; 100 200 L
breal:
: q gl 2D 300
else
¢ Here, pos=3 data mext
1=r.next; 2
i
}
if (r==nmll)

{
Svstem.out. prnthn” Insufficient Node™);

K

else

{

q.next=r.next;
r.next=u;,
h

We can delete an element from the linked list depending on the element. If the element was not found we can
display an error message. We can delete an element as follows...

int del(int x)
{
(q=head;
r=head;
while(q!=null)
{
if(q.data==x)
{
if(head==q)
{
head=head.next:
retum x;
|
glse
{
r.next=q.next;
retum x;
}
}
else
{
r=q;
g=q.next;
}
!
return 0O:
!
Display

We can display the elements starting from the head node to last node as follows.....

void display()
{
node r;
r=head;
if(r==null)
{

}

else

{

System.out.printin("Elements in the list are....");
while(r!=null)

{

System.out.println("Insufficient nodes");

System.out.printin("\t" + r.data);
r=r.next;

}

Circular Linked List

In single linked list, every node points to its next node in the sequence and the last node points NULL. Butin
circular linked list, every node points to its next node in the sequence but the last node points to the first node in the list.

*head
node ﬂddl’EEi“

1001 1004 1008 1012

Yooil—> ioos}—> B oz

Insertion
In a circular linked list, the insertion operation can be performed in three ways. They are as follows...
1. Inserting At Beginning of the list
2. Inserting At End of the list
3. Inserting At Specific location in the list
Inserting At Beginning of the list
We can use the following steps to insert a new node at beginning of the circular linked list...
« Step 1: Create a newNode with given value.
e Step 2: Check whether list is Empty (head ==NULL)
e Step 3: If it is Empty then, set head = newNode and newNode.next = head .
« Step 4: If it is Not Empty then, define a Node pointer 'r' and initialize with 'head'.
» Step 5: Keep moving the 'r' to its next node until it reaches to the last node (until r. next == head').
« Step 6: Set 'newNode.next =head', 'head = newNode' and 'r.next = head'

This can be shown in below.

10 200 20 300 1 30 400 1 40 200 _
100 200 300 400

— 3 5 [100—

500 New Node

Inserting At End of the list

We can use the following steps to insert a new node at end of the circular linked list...

Step 1: Create a newNode with given value.

Step 2: Check whether list is Empty (head ==NULL).

Step 3: If it is Empty then, set head =newNode and newNode.next = head.

Step 4: If it is Not Empty then, define a node pointer ‘r* and initialize with head.

Step 5: Keep moving the ‘r’ to its next node until it reaches to the last node in the list (until r.next == head).

Step 6: Set r.next = newNode and newNode.next = head.

head —
:.t 10 |200+——P1 20 |300——P 30 |400(———P| 40 | 500
100 200 300 400
|
" 50 | 100
500
New Node

Inserting At Specific location in the list (Before a Node)

We can use the following steps to insert a new node before a node in the circular linked list...

Step 1: Create a newNode with given value.

Step 2: Check whether list is Empty (head == NULL)

Step 3: If it is Empty then, set head = newNode and newNode.next = head.
Step 4: If it is Not Empty then, define a node pointer *r’ and initialize with head.

Step 5: Keep moving the ‘r’ to its next node until it reaches to the node before which we want to insert the
newNode

Step 6: Every time check whether ‘r’ is reached to the last node or not. If it is reached to last node then

e Step 7: If *r’ is reached to the exact node after which we want to insert the newNode then check whether it is last
node (r.next == head).

e Step 8: If “r’ is last node then set r. next = newNode and newNode.next = head.

o Step 8: If *r’ is not last node then set newNode.next =r.next and r.next = newNode.

New Node

Deleting a node based on data part

We can delete a node in Circular Singled Linked List depends on the data part of the node. If the node found in the
list we simply delete that node otherwise we print that the node not found.

The following is the logic to delete an element within circular singled linked list.

For example consider the following circular singled linked list and we need to delete the element 30 from the list.

Head L Null

10 | wt—>

Selected Node

A fter deletion the list is as follows.

v |

Nl

Fkkdodok ok kb ok ok sk ok ok kR R Rk Rk k I ngert Prngram Here %% %% %88k dokok kokododkokokok sk ok kokokkokok

T™ L. T8 7.7 8 L iTT T M

Step
Step
Step
step

Step

=% A pointer to previous node called as left.
=8 Data part.
=% A pointer to next node called as right.

Data part

A pointer to previous Node A pointer to next Node

Fig: Node

DLL contains extermal pointer to point the first node address and also first node left pointer and last
node rnight pointer must be set to NULL. This is shown in the following diagram.

Root

|+ e —> PR
NULL | 2 2000 e—— 1000 | 4 3000 2 2000 6 4000 e 3000 | 8 NULL

1000 2000 3000 4000

If the DLL contains only one node then its left and right pointers must be set to NULL.

Operations of DLL

a) Insertion of node at Beginning

Root
> nutl| 4 | 3000 L >l 2000 6 | 4000 ” > 3000 BJ_HULL

2000 3000 4000

Consider the following DLL

Insertion of node p 10000

= 1 ‘Creafe @ node” (p) 2 =m—=rseas-

— 2% THEsaPE dabs "2 I phJSssesssy 2

= & Assigh right (p) o reot-———== ‘ 2 |zum1 \
= 4y Agsign Left (p) to HULL====== NUU_‘:E 2000

— 5: Assign left (root) to p

Step - 6 : Assign root to p----- L) NULL| 2 2000

A fter insertion node at beginning the DLL 1s;

Root
= NULL | 2 2000 |E] 1000 | 4 | 3000 'E;"' 2000 6 | 4000 ? 3000 | 8 |NULL
1000 2000 3000 4000
b) Insertion of node at end
Consider the following DLL
Root 0
> NuLL| 4 3000 1 2000 | 6 [4000 —>| 3000 8 |NuULL
2000 3000 4000
Insertion of node r at end
B Step - 1 reate a node (r)
M Ster — 20 nssrEasEa) 107 1n Yrf,
sk Step - 3: Assign right (r) to NULL
% Step - 4: Assign right (g) to r
Bk Step - 5 assign left(r) to g
A fter inserting node at end the DLL is
Root q r
N —> ﬂ‘*\ —>
NULL| 4 | 3000 | lznnn. 6 _.annu 3000 i 5|:qu£ k 4n|:l-::- 10 | NULL
2000 3000 4000 5000
¢) Insertion of node at middle
Consider the following DLL
Root p r
LS| nutL| 4 | 3000 \E o000 6 | 4000 lﬁ 3000 | 8 |NULL
2000 3000 4000
Insertion of node g in between pand r
s Step - 1: Create a node (q)
% Step - 2: Insert data ‘7" in ‘qg’.
ok Step - 3: Assign right (p) to g
f Step - 4: Assign left (g) to p
ik Step - 5: assign right (g) to r
Bl Tt Aary - e RDooctvar laftE =Y e/

A fter inserting node at end the DLL is;

Root D q
S N | 4 | 3000 ﬁ_:*‘ 2000 | 6 | 3500 L_) 3000 | 7 |4000 IZ 3500 NULL
2000 3000 3500 4000
d) Deletion of node at Beginning
Consider the following DLL
Root p
LSl now | 2 2000 L ?1 1000 | 4 | 3000 'f 2000 6 | 4000 _}:—Z 3000 NULL
1000 2000 3000 4000
Deletion of node p
- Step - 1: delete 2 from p
= Step - Z2: Assign root to next (p)
- Step - 3: Assign left (root) NULL
- Step - 4: remove node ‘p’.
After Deletion of node at beginning the DLL 1is;
Root
S nuw| 4 | 3000 E—1 2000 | 6 | 4000 - amﬂ 8 |NULL
2000 3000 4000
e¢) Deletion of node at End
Consider the following DLL
Root q
|9| NULL | 2 2000 L >l 1000 | 4 | 3000 'EJ«"\ 2000 6 | 4000 ﬁ 3000 NULL
1000 2000 3000 4000

Deletion of node r

e Step - 1:
s Step - 2:
W Step - 3:

Assign right
remove node

After Deletion of node at end the DLL 1is;

delete 8 from r

()
b i

to NULL

Root

%’ NULL

2000

il

1000

1000

3000

!

|

2000

2000

NULL

3000

-l'l.‘ﬁ

-l'l.‘ﬁ

Stack using Linked List (OR) Linked Stack

The major problem with the stack implemented using array is, it works only for fixed
number of data values. That means the amount of data must be specified at the beginning of the

implementation itself. Stack implemented using array is not suitable, when we don't know the
size of data which we are going to use.

A stack data structure can be implemented by using linked list data structure. The stack
implemented using linked list can work for unlimited number of values. That means stack
implemented using linked list works for variable size of data.

So, there is no need to fix the size at the beginning of the implementation. The Stack
implemented using linked list can organize as many data values as we want.

In linked list implementation of a stack, every new element is inserted as 'top' element.
That means every newly inserted element is pointed by 'top'. Whenever we want to remove an
element from the stack, simply remove the node which is pointed by 'top' by moving ‘top’ to its
next node in the list. The next field of the first element must be always NULL.

Example

t[}p-—)

2]

In above example, the last inserted node is 99 and the first inserted node is 25. The order
of elements inserted is 25, 32,50 and 99.

-I.I‘tl

Operations

To implement stack using linked list, we need to set the following things before
implementing actual operations.

« Step 1: Import all the required packages which are used in the program.
« Step 2: Define a 'Node' class with two member’s data and next.
« Step 3: Define a Node pointer 'top' and set it to NULL.

« Step 4: Implement the main method by displaying Menu with list of operations and
make suitable function calls in the main method.

push(value) - Inserting an element into the Stack
We can use the following steps to insert a new node into the stack...
« Siep 1: Create a newNode with given value.
« Step 2: Check whether stack is Empty (top ==NULL)
« Step 3: If it 1s Empty, then set newNode.next = NULL.
« Step 4: If it is Not Empty, then set newNode.next = top.
« Step 5: Finally, set top = newNode.
pop() - Deleting an Element from a Stack
We can use the following steps to delete a node from the stack...

« Step 1: Check whether stack is Empty (top == NULL).

« Step 2: If it is Empty, then display " Stack is Empty!!! Deletion is not possible!!!" and
terminate the function

« Step 3: If it is Not Empty, then set 'top = top.next'.
display() - Displaying stack of elements
We can use the following steps to display the elements (nodes) of a stack...
« Step 1: Check whether stack is Empty (top == NULL).
« Step 2: If it is Empty, then display 'Stack is Empty!!!"' and terminate the function.

« Step 3: If it 1s Not Empty, then define a Node pointer 'temp’ and initialize with top.

——————————————————————

-I.I_‘ﬁ

« Step 4: Display 'temp.data' and move it to the next node. Repeat the same
until temp reaches to the first node in the stack (temp.next !=NULL).

The following is the java program that implements the stack using linked list.

Aim: To write a java program that implements a stack data structure using singled linked list.

Program: LinkedStack.java

import java.util.*;

class node
{
int data:
node next:
}
class LinkedStack
{
node top;
LinkedStack()
{
top=null;
$
void push(int ele)
{
node q=new node();
q.data=ele;
if(top==null)
{
q.next=null;
top=q;
}
else
{
q.next=top;
: top=q;
System.out.println(ele +" inserted successfully");
S}FStE]Jl.nut.pIiHﬂIl{ "\lﬂ*#ﬂﬂ**#ﬂﬂ*ﬂﬁ*#****## ”};
}
i{ﬂt pop()
if(top==null)
{
return 0:
}
else
{

-l'l.‘ﬁ

int d=top.data;

top=top.next;
return d;
]
}
void display()
{
if(top==null)
{
System.out.println("Linked Stack is empty");
S}fstﬂm.ﬂutpﬂnﬂn{ A R R S o A):
}
else
{
node r:
r=top;
System.out.println("The elements in Linked Stack are...\n");
while(r!=null)
{
System.out.println(r.data);
r=r.next;
}
System.ﬂutpﬂntln{ "\I‘.l** L EEEEEEEEE S EE LS "};
}
}
}
class LinkedStackDemo
{

public static void main(String|] args)

{
int ele,ch:
Scanner sc=new Scanner{System.in);
LinkedStack ls=new LinkedStack():

System.out.println("\n1.PUSH");
System.out.println("\n2.POP");

(
System.out.println("\n3. DISPLAY i
System.out.println("\n4.EXIT");

System.out.println("\nEnter your choice:");
ch=sc.nextlnt();

System.out. println("\n****x ks kkA k1),
switch(ch)

{

case 1: System.out.println("Enter element to insert:");
ele=sc.nextInt();

————————

Is.push(ele);
break:

case 2: ele=ls.pop();

if(ele==0)

{
System.out.println("Linked Stack is Underflow");

System.out. printIn("\prasksdkdkkodkkdkkokk 1),

else
System.out.println("The poped element is:" + ele);
System.out. printIn("\pr¥kFskkkkkkkkkrk* 1),

'
break:

case 3: Is.display();

hﬂﬁk;

case 4: System.exit(0);

}
hwhile(ch!=4):

1.PUSH
2.POP
3.DISPLAY
4. EXIT

Enter your choice:
]

Enter element to insert:
18

10 inserted successtully

Enter your choice:
1

Enter ElEWEHt 1O ingept:
20

20 inserted successfully

S P L L L P Lt LT X

rour choice:

R EEEEEEEEEXEE

The elements 1n Linked Stack are...

-I.I‘tl

Queue using Linked List (OR) Linked Queue

The major problem with the queue implemented using array is, It will work for only fixed
number of data. That means, the amount of data must be specified in the beginning itself. Queue
using array 1s not suitable when we don't know the size of data which we are going to use.

A queue data structure can be implemented using linked list data structure. The queue
which is implemented using linked list can work for unlimited number of values. That means,
queue using linked list can work for variable size of data (No need to fix the size at beginning of
the implementation). The Queue implemented using linked list can organize as many data values
as we want.

In linked list implementation of a queue, the last inserted node is always pointed by 'rear’
and the first node is always pointed by 'front'.

Example

*front *rear

1001 1004 1008 1012
. R
In above example, the last inserted node is 50 and it is pointed by 'rear' and the first
inserted node is 10 and it is pointed by 'front’. The order of elements inserted 1s 10, 15, 22 and
00,
Operations
To implement queue using linked list, we need to set the following things before
implementing actual operations.
« Step 1: Import all the required packages which are used in the program.
« Step 2: Define a Node' class with two member’s data and next.
« Step 3: Define two Node pointers ‘front’' and 'rear’ and set both to NULL.
« Step 4: Implement the main method by displaying Menu of list of operations and make
suitable function calls in the main method to perform user selected operation.
enQ ueue(value) - Inserting an element into the Queue
We can use the following steps to insert a new node into the queue...
« Step 1: Create a newNode with given value and set newNode.next' to NULL.
« Siep 2: Check whether queue is Empty (rear == NULL)
« Step 3: If it is Empty then, set front = newNode and rear = newNode.
« Step 4: If it is Not Empty then, set rear.next = newNode and rear = newNode.
deQueue() - Deleting an Element from Queue
We can use the following steps to delete a node from the queue...
« Step 1: Check whether queue is Empty (front == NULL).
« Step 2: If it is Empty, then display " Queue is Empty!!! Deletion is not possible!!!" and
terminate from the function
« Step 3:1f it isNot Empty then, delete the element at front position and set
front = front.next'.
display() - Displaying the elements of Queue
We can use the following steps to display the elements (nodes) of a queue...
« Step 1: Check whether queue is Empty (front == NULL).
« Step 2: If it 1s Empty then, display 'Queue is Empty!!!' and terminate the function.
« Step 3: If it is Not Empty then, define a Node pointer 'temp' and initialize with front.

B

-I.I_‘ﬁ

« Step 4: Display 'temp.data ' and move it to the next node. Repeat the same until 'temp’
reaches to rear' (temp.next !=NULL).

The following is the java program that implements the queue using linked list.
Aim: To write a java program that implements a queue data structure using singled linked list.
Program: LinkedQueue.java

import java.util.*;

class node
{
int data;
node next:
}
class LinkedQueue
{
node front, rear:
LinkedQueue()
{
front=null;
rear=null:
}
void insert(int ele)
{
node g=new node();
(q.data=ele;
q.next=null;
if(front==null & & rear==null)
{
rear=q;
front=q;
]
else
{
rear.next=(q;
rear=q;
}
System.out.println(ele +" inserted into Queue Succussfully");
S}FStE]jlmlth'l]lﬂIl{ U0 e e s ofe e ofe e i o e e e e e ol e e ke e o ol e e ol e e e e e o e e ke e e o e e kg o o 1]:
}
int delete()
{

if(front==null & & rear==null)

{

————————————————————

-l'l.‘ﬁ

return 0:

}
else
{
int d=front.data;
front=front.next;
if(front==null)
{
rear=null:
}
return d:
¥
}
void display()
{
if(rear==null)
{
System.out.println("Linked Queue is empty");
S}rstem.ﬂutpﬂﬂﬂn(Sk Aok ok ok Ak Ak ko k)
}
else
{
node r:
r=tront:
System.out.println("The Linked Queue Elements are....");
while(r! =null)
{
System.out.print(r.data + "\t");
r=r.next:
}
System.out. println("\p*#FFFsk kst khopkkkkorxkkk).
}
}
}
class LinkedQueueDemo
{

public static void main(String args(])

{
Scanner sc=new Scanner(System.in);
int ele,ch;
LinkedQueue lg=new LinkedQueue();

System.out.println("1.INSERT");

System.out.println("2.DELETE");
System.out.printin("3.DISPLAY ");

————————————————————————

System.out.println("4.EXIT");
Systemnutpnﬂﬂn{ U e o o s ok o o ok o o ok ok ok “];
do
{
System.out.println("Enter your choice:");
ch=sc.nextInt():

switch(ch)
{
case 1: System.out.println("Enter element to insert:");
ele=sc.nextInt();
Iq.insert(ele);
break;
case 2: ele=lq.delete();
if(ele==0)
{
System.out.println("Linked Queue is Underflow");
System.ﬂut.priﬂﬂn{“##ﬂHﬂ*#ﬂi*ﬂﬂﬂéﬂfﬂﬂﬂﬁ*##ﬂﬂﬂ“}J.
}

else

{

System.out.printIn("The deleted element is:" +ele);
S}Tstem.ﬂut.pﬂﬂﬂn{“#ﬂfﬂﬂﬂﬂ#ﬂf*ﬂﬂﬂﬂﬂtﬂﬂf**# **“J;

}

break;
case 3: 1g.display();

break;
case 4: System.exit(0);

}
twhile(ch!=4):

Enter vour cholce:
1
Enter element to insert:

20

20 inserted into Queue Succussfully

e A R e e e e R e e e

- INSERT
2.DELETE
3.DISPLAY
A EXIT
e e T R R R R R K

nter your choice:

Enter your choice:

4

The Linked Queue Elements are....

7} - 'l . - — 1 L‘l Lr I_‘

® 1nserted into Queue Succussfully 34 3 e ok o o o oo ok ook ok o o o ok ok ok ok ok ok o ok ok ok ok ok o ok ok koK sk kR ok ok
i i S s 3% s sk s sk ok o ok ok o o SR S S ok ok sk sk ok ok ok R R R R kR R kR

nter element to insert:
)

Enter your choice:

DataStructures

QUEUE DATA STRUCTURE

Queue

PAY HERE

N

"T__'F

Queue is a linear data structure in which the insertion and delefion operations are
performed at two different ends.

The end which is used to insert the elements into the queue is called as rear end.

The end which is used to delete the elements from the queue is called as front end.
Initially the front and rear of queue are set to -1.

In queue data structure, the insertion and deletion operations are performed based
on FIFO (First In First Out) principle.

The process of inserting elements into the queue is called as enqueue and this can be done
by the function enqueue().

» The process of deleting elements into the queue is called as dequeue and this can be done
by the function dequeue().

The general structure of a Queue data structure is shown in below.

"'!_f_." "':" "!:.?' "!r-'.?'

tf'

mf'

enqueuel) operation dequeuel() operation
REAR FRONT

enqueue() is the operation for adding an element into Queue.

dequeuef) is the operation for removing an element from Queue .

QUEUE DATA STRUCTURE

——————————————————————

DataStructures

A pplications:
Typical uses of queues are in simulations and operating systems.

« Operating systems often maintain a queue of processes that are ready to execute or that
are waiting for a particular event to occur.

« Computer systems must often provide a “holding area”™ for messages between two
processes, two programs, or even two systems. This holding area is usually called a
“buffer” and is often implemented as a queue.

Operations on a Queue
The following operations are performed on a queue data structure...
1. enQueue(value) - (T o insert an element into the queue)
2. deQueue() - (To delete an element from the queue)
3. display() - (T o display the elements of the queue)
Queue data structure can be implemented in two ways. They are as follows...
1. Using Array
2. Using Linked List

When a queue is implemented using array, that queue can organize only limited number
of elements. When a queue is implemented using linked list, that queue can organize unlimited
number of elements.

Implementation of Queue Using Array

A queue data structure can be implemented using one dimensional amray. But, queue
implemented using array can store only fixed number of data values.

The implementation of queue data structure using array is very simple, just define a one
dimensional array of specific size and insert or delete the values into that array by using FIFO
(First In First Out) principle with the help of variables 'front' and rear’. Initially both 'front’
and ‘rear’ are set to -1.

——————————————————————

DataStructures

(Queue Operations using Array

enQueue(value) - Inserting value into the queue

In a queue data structure, enQueue() is a function used to insert a new element into the
queue. In a queue, the new element is always inserted at rear position. The enQueue() function
takes one integer value as parameter and inserts that value into the queue. We can use the
following steps to insert an element into the queue...

« Step 1: Check whether queue is FULL. (rear == SIZE-1)

« Step 2: If itis FULL, then display " Queue is FULL!!! Insertion is not possible!!!" and
terminate the function.

e Step 3:If it isNOT FULL, then incrementrear value by one (rear++4) and
set quelrear] = value,

Example: Initially front and rear are set to *-1".

front =] front= 0 front=10
rear =-| rear = rear <1 fear =1
(rear =-]—1 =0)
Lé.rear =0
msert(6) msert(S) msert(10)
JL&‘ J]Jﬁlﬂ I:i4ﬁ$1@
0 1 2 3 - 0 1 4 0 1 5 3 4
front = 0 front= 0 front= 0
rear =. rear =3 rear =

———————————————————————

(7

DataStructures

deQueue() - Deleting a value from the Queue

In a queue data structure, deQueue() is a function used to delete an element from the

queue. In a queue, the element is always deleted from front position. The deQueue() function

does not take any value as parameter. We can use the following steps to delete an element from
the queue...

Step 1: Check whether queue is EMPTY . (front == rear)

Step 2:If it 1s EMPTY, then display "Queue is EMPTY!!! Deletion is not
possible!!!" and terminate the function.

Step 3: If it isNOT EMPTY, then display queue[front] as deleted element and then
increment thefrontvalue by one (front++).. Then check whether
both front and rear are equal (front==rear), if 1itis TRUE, then set
hoth front and rear to '-1' (front =rear =-1).

delete(2)

—F

(front = front =1)
=> 0 =] =]
1.e front=1

rear =4
X=2

delete(6) delete(8) delete(10)

v L} 2113
here front=rear
front =3 50, set
front=-1 and
rear=-1

x=10

DataStructures

display() - Displays the elements of a Queue

We can use the following steps to display the elements of a queue...
« Step 1: Check whether queue is EMPTY . (front == rear)
« Step 2: Ifitis EMPTY, then display " Queue is EMPTY !!!" and terminate the function.
e« Step 3: IfitisNOT EMPTY, then define an integer variable i' and set '1 = front+1".

« Step 3: Display 'queueli]' value and increment 1' value by one (i++). Repeat the same
until i' value is equal to rear (i <=rear)

Program to implement Queue using Array
The following is a java program that implements a queue data structure by using arrays.
Aim: To write a java program that implements a queue data structure by using arrays.

Program: QueueDemo.java

import java.lo.*;

import java.util.*;

class Queue
{
int quel], max fr:
Queue(int size)
{
Max=slze;
f=1;
r=1;

que=new int{max];

———————————————————————

DataStructures

void insert(int ele)
{
if(r==max-1)
{
System.out.printin("Queue Overtlow");
}
else
{
r++;
quelr]=ele;

System.out.println(que[r]+"element inserted into the queue”);

if(f==-1)
{
f=0;
}
}
}
void delete()
{
int ele;
if(f==1&&r=="1)

System.out.printIn("Queue is underflow");

else

{

S B —

i

DataStructures

ele=quel{];

System.out.printin(ele+"element deleted form the Queue ");

if(f==r)
{
=1
r=1;
}
else
{
f++;
}
1
}
void display()
{
if(f=="1)
{
System.out.println("Queue is empty");
1
else
{
System.out.println("Elements in the queue are.....");
for(int i=f;i<=ri++)
{

———

DataStructures

System.out.print("\t" + que[i]);

}
System.out.println("");
}
}
}
class QueueDemo
{

public static void main(String args(])

{
int ch,ele n:
Scanner d=new Scanner(System.in);
System.out.printin(" Enter size of the queue:");

n= (.nextint();

Queue g=new Queue(n);

System.out.println("\n1.Insert\n");
System.out.println("2.Delete\n");
System.out.println("3.Display\n");
System.out.printin("4.Exit\n");

do

System.out.println(" Enter your choice....");

ch=d.nextlnt();

_SI—

i

Output:

switch(ch)

{
case 1:
case 2:
case 3:
case 4:

!

twhile(ch!=4).

DataStructures

System.out.println("Enter an element to insert");

ele=d.nextInt():
q.insert(ele);
break:

q.delete();
break:

q.display();
break:

System.out.println("Exiting from the queue");
break;

(]

C:\Program Files (x80)\EditPlus 2\launcher.exe

DataStructures

—

Circular Queue

Problem in Queue

For example take a queue with size =3.

DataStructures

Empty Quene insert(S) msert(10)
3 10
0 1 2 0 1 2 0 | 2
front = -1 front =0 front =0
rear =-1 rear =0 rear = 1
insert(15) delete(5) delete(10)
S 10 | 15 10 | 15 15
0 l - 0 | . 0 1 £
front =0 front = | front=2
vesr &0 rear =2 rear = 2
X =3 k =10

Here queue contains two empty locations but rear = size -1. i.e. queue is full and
therefore insertion is not possible here. This problem is avoided by Circular Queue.

Circular Queue:

In circular Queue we insert the data element after rear = size-1. Here we move circularly
to insert or delete data elements. It is simply called as circular armay. In circular queue front and

rear initially set to zero.

Here, we consider another variable called count to represent the total number of elements

within the Circular Queue.

—

\/

DataStructures

Size= 5

Initially count=0

Operations of Circular Queue:
Create:

It is used to create empty circular queue.
Insert:

Before inserting the data element in Queue first of check the condition (count == size), if
it is true the Queue is overflow (full). Otherwise insert the data element in that location and
increment the rear. When an element is added to Circular Queue we increment the value of cnt
by 1.

Example: Initially front and rear are set to “0°.

size=5 cnt=0 insert(2) "1 insert(4) cnt=2
L \ L ol
0 1 22—~ % 0 LV A GSULW Y al I 3 4
front=10 front=10 front = 13
rear =0 rear = | rear =-
insert(6) cnt=3 insert(8) cnt=4 insert(10) =3
2 4 6 - 4 6 8 - 4 6 s 10
01 2 & 44 0 1 2 3 4 01 2 3 4
front =0 front =0 front =0
rear =3 rear =4 rear =9

A fter inserting all the elements, cnt =5 it means the queue is full.

—

DataStructures

Delete:

To delete data element from the circular queue first of all check the condition (cnt==0), if
it is true circular queue i1s underflow (empty), otherwise delete the data element in that location

and increment the front. When an element is removed from Circular Queue we decrese the value
of cnt by 1.

size = § delete(2) delete(4)
2 |4 (6 (8 |10 4 (6 (8 [10 6 |8 |10
0 1 2 3 4 0 1 2 3 ¢ b1 2 3 4
front=0 -
. sk x=2 ent=3 > 1
rear =4 = fl'ﬂﬂt =] front =2
cnt=5 reat :.4 rear :,_1

delete(6) delete(8) delete(10)

2 3 4
X= 6 cnt=2
front =3
rear =4

A fter deleting the entire elements cnt ==4; it means that queue is empty.

Display: It is used to display the elements in the queue.

DataStructures

The following diagrams show how to insert data element in circular queue from the front end.

e Reas ViiuSize-1 =" 8§ 44
B 21
7 9
63
6
A 32
MNew 1tem: . &
Whens cun T
it gir? 5 a0
d— lirank B
3 12 +—— Froal
2
|
@ 63 d— Rear

The following program illustrates the implementation of Circular Queue.
Aim: To write a java program to implement Circular Queue Data Structure,

Program: C QueueDemo.java

import java.l0.*;
class CQueue
{
DatalnputStream d=new DatalnputStream(System.in);
int af]:
int i,front, rear,max,ele,count:
CQueue(int size)
{
max=slzZe;
front=0:
rear=0:
count=0:
a=new intfmax]:

}

void insert()

{

if(count<max)

{
System.out.println("Enter the element to be added:");

——

DataStructures

ele= Integer.parselnt(d.readLine());
al rear]=ele;

rear++;

count++;

else

{
}
if(front==max)

{
}

System.out.printin("QUEUE IS FULL");

front=0:

}

void delete()
{

int ele;
if(count! =0)
{
ele=alfront]
System.out.println(“The item deleted is:" + ele);

front++:
count--:

}

else

{
}

if(rear==max)

{

System.out.printin("QUEUE IS EMPTY");

rear=(:

if(front==max)

{
front=0:

}
}

void display()
{
int m=0:
if(count==0)
{
System.out.printin("QUEUE IS EMPTY");

}

.

DataStructures

else

{

for(i=front: m<count;i++m++)
System.out.println(" " +a[i%max]);
}

}
}
class CQueueDemo

{
public static void main(String args|])throws IOException

{
DatalnputStream d=new DatalnputStream(System.in);
int ele,ch,n;
System.out.printin("Enter the size of the queue...");
n=d. Integer.parselnt(d.readLine());
CQueue cqg=new CQueue(n);

System.out.printin(" 1.Enqueue \n\n 2.Dequeue \n\n 3.Display \n\n 4.Exit");
System.out.println("Enter the choice");
ch= Integer.parselnt(d.readLine());
switch (ch)
{
case 1:
cq.insert();
break:
case 2:
cq.delete();
break:
case 3:
cq.display();
break:
case 4: System.out.println(“Exit from the CQueue™);
break:

}
twhile(ch!=4);

Output:

DataStructures

! 8" CA\Program Files (x80)\EditPlus Z\launcher.exe

ze ot the gueue...
1.Enqueue
2 .Dequeue

3.Display

10

1. Engueue

2 .Dequeue

3.Display

1.Enqueue
2 .Dequeue
3.Display
4. Exit

Enter the choice
1

L2222 E R EE R E 2L R R AR R 2R EEE R LSRR EEEE R E S £

—

DataStructures

Double Ended Queue (Dequeue)

Double Ended Queue is also a Queue data structure in which the insertion and deletion
operations are performed at both the ends (front and rear). That means, we can insert at both
front and rear positions and can delete from both front and rear positions.

s1ze =5
Insertion from front -» L‘—Iusnertm n from rear
a >
Deletion from front 0 1 .. 3 4 Deletion from rear
front = -1
rear = -1

Operations of De-Queue:
4 Insertion from front
4 Insertion from rear
4 Deletion from front
4 Deletion from rear

a). Insertion from front
For example consider a queue with size = 5. Here queue is empty. Therefore insertion of

front is identical to insertion of rear. For example the data element is inserting from rear end. i.e
increment the rear and insert the data element in that location.

Insertion of (2)
insert(2)
:i
0
front = -1
rear =rear —1 (rear=-1-1=0)
i.e.rear =0
Insertion of (4)
Here queue is not empty and front == -1. Therefore, insertion from front end is not

possible. So insert the data element from the rear end. i.e. increment the rear and insert the data
element in that location.

— T

DataStructures

insert(4)
2 |4
0 1 2 3
front = -1
rear =1

Insertion of (6)

Here rear # size -1. Increment the rear and insert the data element in that location.

Insert(6)

-

1 6

0

rear

1 z 3

front = -1

=2

Insertion of (8)

Here rear # size - 1. Increment the rear and insert the data element in that location.

Insert(8)

2

R 6 8

1 2 3

front =-1
rear = 3

Insertion of (10)

Here rear # size -1. Increment the rear the insert the data element in that location.

Insert(10)

b2

4 6 8

10

0

1 2 3
-1

—
—

front
rear

4

\/

DataStructures

Insertion of (12)
Here, rear =size -1. Therefore De-Queue is overtflow and also insertion from the front is

not possible because queue is not empty and front=-1

Deletion from Rear:

Consider a queue as follows;

2
I
o

3 10

D 1 2 3 4

front = -1
rear =4

Here front #rear. Deletion 1s possible from rear end. Therefore delete the data element
‘10" and decrement rear by "1°.

delete(10)

bJ

4 |6 |8

0 1 .. > 74

x=10
front = -1
rear =3

Again front # rear, delete the data element and decrement rear by ‘1°.

delete(8)
2] 4 (o]
0 1 2 3 4
=8
front = -1
rear = 2

—

DataStructures

Deletion from front end:
Consider Queue as follows

I

4 6

0 1 2 3 4
front = -1
rear =2

Here front # rear, deletion 1s possible from front end. So increment the front and delete
the date element in that location.

[delete(2)
| 4 6
0 1 2 3 4
front=0
rear =2 l
X =2

Again front # rear
Increment the front and delete the data element in that location.

Here queue contains only one element and is deleted by using either end.

Insertion from front:
Consider a queue as follows;
s | |
0 1 z 3 4
front = 1
rear = 2 .

————————————————————————

DataStructures

Here queue 1s not empty and front is not equal to *-1°. So insertion from front is possible.
Insert the element then decrement the front by *1°.

Insert (12)

Again queue 1s not empty and front # - 1. Insert the data element and decrement front by “1°.

Insert(14)
14 12 6
0 1 2 3 4
front = -1
rear = 2

Now further insertion is not possible from the front because front ==-1.

Note:
Insertion from front is possible only in two cases.
1. If front!=1

2. We have to delete at least one element from the front end.
The following program illustrates the implementation of Double Ended Queue.

Aim: To write a java program to implement Double Ended Queue.
Program: DequeueDemo.java

import java.io.*;
class Dequeue
{

int front, rear, max:

int dquel];

Dequeue(int size)

{
Max=slze;
dque=new int[max];
front=-1;
rear=-1:

}

void insert rear(int ele)

{

—

\/

DataStructures

if(rear==max-1)

{
System.out.println("Insertion not posible\n");
}
else
{
rear—+;
dque|rear]=ele;
System.out.println("Element " +ele +" inserted succusfully\n");
}
}
void insert front(int ele)
{
if(front==-1)
{
System.out.println("Insertion not posible\n");
!
else
{
dque|front]=ele;
front--;
System.out.printin("Element * + ele + " inserted succesfully\n");
!
}
void delete front()
{
int ele;
if(front==rear)
{
System.out.println(*‘Deletion is not possible™);
}
else
{
front++:
d=dque[front];
System.out.println(ele+“element Deleted through front end from
dequeue™);
if(front==rear)
front=rear=-1;
}
}
void delete rean()
{
int ele;
if(front==rear)

——————

i

DataStructures

{
System.out.println(*‘Deletion from rear end is not possible™);
}
else
{
ele=dque|rear];
rear--;
System.out.println(ele+element deleted through rear end from dequeue™);
if(front==rear)
front=rear=-1;
}
return d;
}
void display()
{
if(front==1 & & rear==-1)
{
System.out.println("\nD equeue is empty");
}
else
{
System.out.printin(*\nT he elements of dequeue are....");
for(int i=front+1:i<=rear:i++)
{
System.out.print(dqueli] + "\t");
h
}
}
}
class DequeueDemo
{

public static void main(String|] args)

{
DatalnputStream d=new DatalnputStream(System.in);
int n,ch,ele;
System.out.println("Enter size of the dequeue:");
n=Integer.parselnt(d.readLine());
Dequeue dg=new Dequeue(n);

System.out.println("\nl.Insertion from front");

{
System.out.println("\n2.Insertion from rear");
System.out.println("\n3.Deletion from front");
System.out.println("\n4.Deletion from rear");
System.out.println("\n5.Display");
System.out.println("\n6.Exit");

———————————————————————

i

DataStructures

System.out.println("Enter your choice:");
ch= Integer.parselnt(d.readLine());
switch(ch)
{
case 1:System.out.println("Enter element to insert at front:");
ele= Integer.parselnt(d.readLine());
dqg.insert front(ele);
break;
case 2:System.out.println(" Enter element to insert at rear:”);
ele= Integer.parselnt(d.readLine());
dqg.insert rear(ele);
break;
case 3: dq.delete front();
break;
case 4:dq.delete rear();
break:
case b: dq.display();
break;
case 6: System.exit(“Exit from Dequeue”);
break;

1

twhile(ch!=6):

Output:

DataStructures

B C\Program Files (x86)\EditPlus 2\launcher.exe

Enter si1ze ot the dequeue:

1

1 _Tnsertion from front

Z2.Insertion from rear
}.Deletion from front
.Deletion from rear

5 _Display

G.Exat

Enter your cholice:

1

Enter element to insert at front:

1@

Insertion not posible

Enter your choice:

]
i

Enter element to insert at rear:
16
Element 168 inserted succusfully

Enter yvour cholce:

T o e S e e S T B e S e e e e e e e e e S e R e e e e e S e e e e R

Priority Queue

Priority Queue is a queue, in this insertions are done as a normal queue and deletions are
done according to some priornity.

For example use the following two operations:
pq_mindel ():-

Using this operation we find the minimum element in the queue and delete it from queue.
For example queue size i1s 5 and initially front and rear set to *-1° and the following 5 elements
are inserted;

—

DataStructures

0 1 2 3 4
front = -1
rear =4
Now 1n this operation data element ‘2" is deleted and will produce the outputas 4 6 10
8.
pq_maxdel ():-

Using this operation we find the maximum element in the queue and deleted it from the
queue. For example consider queue size is 5 and the following 5 elements are inserted;

4 6 . 10 | 8

0 1 2 3 4

front = -1
fear =4

Now 1n this operation data element “10° 1s deleted and will produce the output as 4 6 2

pgq min or pq max contains two major issues.
» To identy minimum or maximum element.
» Shuffle the array.
A fter shuffling the array, the succeeding elements must be shifted to one position left and
also the rear must be decremented by *1°.

The following is the java program that illustrates the Prionity Queue Data Structure.
Aim: To write a java program that implements a Priority Queue Data Structure.

Program: PQueueDemo.java

import java.lo.*;

class PQueue
{
int quel], max fr:
PQueue(int size)
{
max=size:
f=-1.
r=1:

que=new int{max];

—

DataStructures

}
int find min()
{
Int min;
min=quel[f];
for(int i=t+1:i<=r:i++)
{
if(min>queli])
{

}
}

return min:

min=queli);

}
int find max()
{
Nt max;
max=que[f];
for(int i=f+1:i<=ri++4)
{
if(max<queli])
{

}
}

retum max:

max =queli];

}

void insert(int ele)

{

if(r==max-1)

{
}

else

{

System.out.println("Queue Overtlow");

I+
que[r]=ele;

System.out.println(ele+ elemenmt inserted successfully™);

if(f==1)
{

}

f=l):

¥
:
void delete(int x)
{

—y————————————————————

DataStructures

int d;
if(f==1)
{
System.out.println(**Queue is Empty™);
}
else
{
if(x==2)
{
d=find min();
System.out.println(*Minimum element 1s"+d);
}
else
{
d=find max();
System.out.println(“Maximum element 1s”+d);
}
for(int i=f; 1<1; 1++4)
{
if(quefi] ==d)
{
for(int j=i; j<=r-1; j++)
{
quefj] = quelj+1];
}
break:
}
}
if(f==r)
{
f=r=1;
}
else
{
I--;
}
}
return d;
}
void display()
{
if(f==1)

———————————————————————

i

DataStructures

{
System.out.println("Queue is empty");
}
else
{
System.out.println("Elements in the queue are.....");
for(int i=f;i<=r:14++4)
{
System.out.print("\t" + queli]);
}
System.out.println("");
]
}
}
class PQueueDemo
{

public static void main(String args|])throws IOException
{

int ch,ele,size;

DatalnputStream d=new DatalnputStream(System.in);
System.out.println("Enter size of the queue:");

size= Integer.parselnt(d.readLine());

PQueue p=new PQueueDemo(size);

do
{
System.out.println("\n1.Insert\n");
System.out.println("2.Delete Mininmum\n");
System.out.println("3.Delete Maximum\n");
System.out.printin("4.Display\n");
System.out.println("5.Exit\n");

System.out.println("Enter your choice....");
ch=sc.nextInt();

switch(ch)
{
case 1:
System.out.printin("Enter an element to insert");
ele= Integer.parselnt(d.readLine());
p.insert(ele);
break:
case 2:
p.delete(ch);
break:
case 3:

—y—————————————————

DataStructures

p.delete(ch);
break:

case 4
p.display();
break;

case J:

System.out.println("Exiting from the queue");
break;

}
hwhile(ch!=5):

Output:

| ® C:A\Program Files (x86)\EditPlus 2\launcher.exe

Enter size of the queue:

1.1Insert
elete Mini1nmum

}.Delete Maximum

4.Displavy
I 3

5.Bxat

Enter your cholce....
1
Enter an element to insert

16

DataStructures

SEARCHING’S

W hat is Search

Search is a process of finding a value in a list of values. In other words, searching is the
process of locating given value position in a list of values.

Linear Search Algorithm (Sequential Search Algorithm)

Linear search algorithm finds given element in a list of elements with O(n) time
complexity where n is total number of elements in the list.

Linear search 1s implemented using following steps...
« Step 1: Read the search element from the user
« Step 2: Compare, the search element with the first element in the list.

e Step 3: If both are matching, then display "Given element found!!!" and terminate the
function

« Siep 4: If both are not matching, then compare search element with the next element in
the list.

« Step 5: Repeat steps 3 and 4 until the search element is compared with the last element in
the list.

« Step 6: If the last element in the list is also doesn't match, then display "Element not
found!!!" and terminate the function.

Example

Consider the following list of element and search element...

ist [65/20]10{55[32]12|50{99

search element 12

——————————————————————

DataStructures

Step 1:
search element (12) is compared with first element (65)

ist [65]20]10{55[32]12]50/99

12

Both are not matching. So move to next element

Step 2:
search element (12) is compared with next element (20)

ist [65]20]10]55[32[12|50{99

12

Both are not matching. So move to next element

Step 3:
search element (12) is compared with next element (10)

ist |65(20}20]55[32|12[50[99
12

Both are not matching. So move to next element
Step 4:
search element (12) is compared with next element (55)

12

Both are not matching. So move to next element

——————————————————————

DataStructures

Step 5:
search element (12) is compared with next element (32)

ist [65/20]10[55]32]12|50[99
12

Both are not matching. So move to next element
Step 6:
search element (12) is compared with next element (12)

ist |65/20]10]55/32[42]50/99
|2

Both are matching. So we stop comparing and display
element found at index 5.

The following is a java program that implements Linear Search algorithm.
Aim: To write a java program that implements Linear Search algorithm.
Program: SequentialSearch.java

import java.lo.*;

class SequentialSearch

{
public static void main(String args|])throws IOException

{
DatalnputStream d=new DatalnputStream(System.in);
int n,1,flag=0 key;
System.out.printin("Enter size of the array");

n=[nteger.parselnt(d.readLine());

B B

DataStructures

int a[|=new int[n]:
System.out.println("Enter elements into the array");
for(i=0:i<n;i++)
{
ali]=Integer.parselnt(d.readLine());
}
System.out.println("the array elements are....");
for(i=0:i<n:i+4)
{
System.out.println(a[i]);
1
System.out.printIn("Enter element to search");
key=Integer.parselnt(d.readLine());

for(i=0:1<n:1+4)

{
if(key==a[i])
{
flag=1;
break;
}
1
if(flag==1)
{
System.out.println(key+" found in"+i+1)+"position");
1

S B

DataStructures

else
{
System.out.println(key+" not found");
}
}
}
Output:
R " CA\Program Files (x86)\EditPlus 2\launcher.exe

Binary Search Algorithm

Binary search algorithm finds given element in a list of elements with O(log n) time
complexity where n is total number of elements in the list. The binary search algorithm can be
used with only sorted list of element. That means, binary search can be used only with list of
element which are already arranged in an order. The binary search cannot be used for list of
element which are in random order.

Binary search is implemented using following steps...
« Step 1: Read the search element from the user

« Step 2: Find the middle element in the sorted list

———————————————————————

DataStructures

Step 3: Compare, the search element with the middle element in the sorted list.

Step 4: If both are matching, then display "Given element found!!!" and terminate the
function

Step 5: If both are not matching, then check whether the search element is smaller or
larger than middle element.

Step 6: If the search element is smaller than middle element, then repeat steps 2, 3, 4 and
o for the left sub list of the middle element.

Step 7: If the search element is larger than middle element, then repeat steps 2, 3, 4 and 5
for the right sub list of the middle element.

Step 8: Repeat the same process until we find the search element in the list or until
sublist contains only one element.

Step 9: If that element also doesn't match with the search element, then display "Element
not found in the list!!!" and terminate the function.

Example

Consider the following list of element and search element. ..

ist [10]12]20{32]50]55/65[80|99

search element 12

DataStructures

Step 1:
search element (12) is compared with middle element (50)

ist |10{1220{32]50]55|65(80|99
12

Both are not matching. And 12 is smaller than 50. So we
search only in the left sublist (i.e. 10, 12, 20 & 32).

ist |10{12[20]|32

Step 2:
search element (12) is compared with middle element (12)

list E;
12

Both are matching. So the result is “Element found at index 1”

Now consider another search element 80

DataStructures

Step 1:
search element (80) is compared with middle element (50)

list [10{12]20{32|50|55|65(80]|99
80

Both are not matching. And 80 is larger than 50. So we
search only in the right sublist (i.e. 55, 65, 80 & 99).

list 55(65/80[99

Step 2:
search element (80) is compared with middle element (65)

ist 55|65/80|99
80

Both are not matching. And 80 is larger than 65. So we
search only in the right sublist (1.e. 80 & 99).

ist

Step 3:
search element (80) is compared with middle element (80)

st

Both are not matching. So the result is “Element found at index 7"

—

DataStructures

The following is the java program that implements binary search algorithm.
Aim: To write a java program that implements Binary Search algorithm.
Program: BinarySearch.java

import java.io.*;

class Binarysearch

{

public static void main(String args|])throws IO Exception
{
DatalnputStream d=new DatalnputStream(System.in);
int n,1,key,low, high,mid;
System.out.println("Enter size of the array");
n=Integer.parselnt(d.readLine());
int a[]=new int[n];
System.out.println("Enter elements into the array");
for(i=0:1i<n:1++4)
{
al1]=Integer.parselnt(d.readLine());
}
System.out.println("the array elements are");
for(i=0:1<n:1+4)
{
System.out.println(a[i]);
}
System.out.printin(" Enter element to search");

key=Integer.parselnt(d.readLine());

———————

low=0);
high=n-1;
mid=(low-+high)/2;
while(low<high)
{
if(key==a|mid])
break;
else if(key>a[mid])
low=mid+1;
else
high=mid-1;
mid=(low-+high)/2;
1
if(key==almid])
{
System.out.println(" found at"-Hmid+1)+"position");
1
else
{
System.out.printin("element not found");
1

DataStructures

Output:

B

C:\Program Files (xB86)\EditPlus 2\launcher.exe

DataStructures

DataStructures

UNIT-V

Sorting and Searching: Selection, Insertion, Bubble, M erge, Quick,
Heap sort, Sequential and Binary Searching.

SORTINGS

Definition of Sorting:

Sorting is to organize a collection of data elements based on the order of a comparable
property of each element.

There are three concepts in this definition:
Data element: A unit of information.

Comparable property: A property in each element that can be used to compare element A with
element B. The companson must give one of three possible results:

1. A is greater than B;
2. A 1s equal to B;
3. A is less than B.
Collection: Sorting works on a collection of data elements, not on a single data element.

Bubble Sort

Bubble sort is also known as exchange sort. Bubble sort is a simplest sorting algorithm.
In bubble sort algorithm amay 1s traversed from 0 to the length-1 index of the ammay. In this we
compared one element to the next element, if the first element is greater than the second element
we simply swap them. In other words, bubble sorting algorithm compare two values and put the
largest value at largest index.

The algonthm follow the same steps repeatedly until the values of ammay is sorted. In
worst-case the complexity of bubble sortis O(n2) and in best-case the complexity of bubble sort
1s £(n).

In our example we are taking the following array values

12 9 “ 99 120 1 3 10

————————————————————

DataStructures

The hasic steps followed by algorithm:-
In the first step compare first two values 12 and 9.
12 9 4 99 120 1 3 10

As 12>9 then we have to swap these values

Then the new sequence will be

9 12 4 99 120 1 3 10

In next step take next two values 12 and 4

9 12 4 99 120 1 3 10

Compare these two values .As 12>4 then we have to swap these values.
Then the new sequence will be

9 4 12 99 120 1 3 10

We have to follow similar steps up to end of amray. e.q.

9 4 12 99 120 1 3 10

12 99 120 1 3 10

12 99 1 3 120 10

D 0w w

1
1 12 99 1 120 3 10
2
4

12 99 1 3 10 120

A fter completing the first iteration the first largest element i.e., 120 will be placed in its
proper position. Similarly, in each iteration the next highest value will be placed in its proper
position.

When we reached at last index, then restart same steps until the data is sorted.

The output of this example will be:
1 3 i 9 10 12 99 120

—————————————————————

DataStructures

The following is the program illustrates the bubble sort.

Aim: To write a java program to implement the bubble sort algorithm.
[/BubbleSort.java

import java.io.*;

class BubbleSort

{

public static void main(String args|])throws IO Exception
{
DatalnputStream d=new DatalnputStream(System.in);
int n,i,j,temp:;
System.out. println(“enter the size of an array");
n=Integer.parselnt(d.readLine());
int a[]=new int[n];
System.out.println("enter the array elements");
for(i=0:i<n:i++)
{
ali]=Integer.parselnt(d.readLine());
}
System.out.println("before sorting the array elements are");
for(i=0:1<n:14+4)
{

System.out.println(a[i]);

DataStructures

for(i=n-1;1>0;i--)

{
for(j=0;j<i;j++)
{
if(alj]=alj+1])
{
temp=alj);
aljl=alj+1];
alj+1]=temp;
}
}
}

System.out.println("after sorting the array elements are");
for(i=0:1<n;1++)
{

System.out.println(a[i]);

DataStructures

Output:

B " ormmand Prompt

E:\Naresh\DS Programs\Sortings»>javac BubbleSort.java

E:\Naresh\DS Programs\Sortings>Jjava BubbleSort

Enter size of the array:
5
Enter elements into the array
=12

48

E12
20
18

as before sorting are....

50 40 1) 28 10

as after sorting are...

16 26 1) ate, =1%)
E:\Naresh\DS Programs\Sortings>

Selection Sort

In selection sorting algorithm, find the minimum value in the array then swap it first
position. In next step leave the first value and find the minimum value within remaining values.
Then swap it with the value of minimum index position. Sort the remaining values by using same
steps.

The complexity of selection sort algorithm is in worst-case, average-case, and best case
run-time of ®(n2), assuming that comparisons can be done in constant time.

The following is an example.....

Consider the array ‘a’ of size 5 with elements as follows.....

a[5]={50,40,30,20,10};

B

DataStructures

First Pass
At beginning the array elements are
50 40 30 20 10

Compare 50 and 40, 1.e., 50>40 if it true swap these two. After swapping the array elements are
as follows....

40 50 30 20 10

Now compare 40 and 30, 1.e., 40>30. Swap these two. After swapping the array is as follows
30 50 40 20 10

Now compare 30 and 20, 1.e., 30>20. Swap these two. A fter swapping the array is as follows
20 50 40 30 10

Now compare 20 and 10, 1.e., 20>10. Swap these two. A fter swapping the array is as follows
10 50 40 30 20

Therefore after completing the first pass we are getting the array elements

10 50 40 30 20

By observing the above elements, it is cleared that the smallest element i.e., 10 will be
placed in its proper position. So, similarly in every pass one smallest element will be placed in its
proper position.

A fter completing the second pass the array elements are as follows.....
10 20 50 40 30

After completing the third pass the array elements are as follows.....

10 20 30 50 40

After completing the fourth pass the array elements are as follows.....

10 20 30 40 50

—————————————————————

DataStructures

The following program illustrates the concept of implementation of Selection sort in java.
Aim: To write a java program to implement the selection sort algorithm in java.
Program://SelectionSort.java

import java.io.*;

class SelectionSort

{

public static void main(String args|])throws IO Exception
{
DatalnputStream d=new DatalnputStream(System.in);
int n,1,],temp;
System.out.println(“enter the size of an array”);
n=Integer.parselnt(d.readLine()):
int a[|=new int[n]:
System.out.println(“enter the array elements");
for(i=0:i<n:i++)
{
ali]=Integer.parselnt(d.readLine());
}
System.out.println("before sorting the array elements are");
for(i=0:1<n:1++)
{
System.out.println(a[i]);
}

for(i=0:i<n;i++)

———————————————————

DataStructures

{
for(j=i+1;j<n;j++)
{
if(ali]>aljl)
{
temp=ali];
a[1]=a(j];
a[j]=temp;
}
}
}

System.out.println("after sorting the array elements are");
for(i=0:1<n:1++)
{

System.out.println(ali]);

Output:

DataStructures

E:\Naresh\DS Programs\Sortings>javac SelectionSort.java

E:\Naresh\DS Programs\Sortings>java SelectionSort
Enter size of the array:

5

Enter elements into the array

=1%

40
38

26
196

The elements before the sorting are....

50 40 36 20 10
The elements after the sorting are....

10 20 30 40 56
E:\Naresh\DS Programs\Sortings>

Insertion Sort

Insertion sorting algorithm is similar to bubble sort. But insertion sort is more efficient
than bubble sort because in insertion sort the elements comparisons are less as compare to bubble
sort.

v

This is implemented by inserting a particular element at the appropriate position.

In this method the first iteration starts with the comparison of 1st element with O™
element.

In the second iteration, 2nd element 1s compared with Oth and 1st elements.

In general, in every iteration the element is compared with all the elements present
before it.

v

vV ¥

During the comparison if it is found that the element can be inserted at a suitable position
then space is created for it by shifting the other elements one position to the right and insertion
the left element at the suitable position.

———————————————————————

DataStructures

Positive feature of insertion sorting:

1. Itis simple to implement
2. It is efficient on (quite) small data values
3. It is efficient on data sets which are already nearly sorted.

The complexity of insertion sorting is O(n) at best case of an already sorted array and O(n2) at

WOrst case .

DataStructures

The following program illustrates the implementation of Insertion sort in java.
Aim: To write a java program to implement the Insertion Sort algorithm.
Program:// InsertionSort.java

import java.io.*;

class InsertionSort

{

public static void main(String args|])throws IO Exception
{
DatalnputStream d=new DatalnputStream(System.in);
int n,i,j,temp:;
System.out. println(“enter the size of an array");
n=Integer.parselnt(d.readLine());
int a[]=new int[n];
System.out.println("enter the array elements");
for(i=0:i<n:i++)
{
ali]=Integer.parselnt(d.readLine());
}
System.out.println("before sorting the array elements are");
for(i=0:1<n:14+4)
{

System.out.println(a[i]);

for(i=1:1<n;1++4)

{
o1,
while((j>=0)&&(alj]=alj+1]))
{
temp=alj);
alj]=alj+1];
alj+1]=temp;
=1
}
}

System.out.println("after sorting the array elements are");
for(i=0:1<n;1++)
{

System.out.println(a[i]);

DataStructures

DataStructures

O utput:

E :\Naresh\DS Programs\Sortings>javac InsertionSort.java

E:\Naresh\DS Programs\Sortings>java InsertionSort
Enter size of the array:

5

Enter elements into the array

EL
40
130
120
10

=15 40 308 20 1

Elements after asorting are...

| 10 20 30 40 56
E:\Naresh\DS Programs\Sortings>

Merge Sort
Mernging is the combination of two or more sorted arrays into a single sorted array.

Following figure illustrates the basic, two-way merge operation. In a two-way merge, two sorted
sequences are merged into one.

T ™ T

15 | 55 | 65 | 95

|
s it

DataStructures

The time complexity for merge sort is O(nlogn).

The following program illustrates the implementation of Merge Sort in java.

Aim: To write a java program to implement the Merge Sort Algorithm.
Program://MergeSort.java

import java.io.*;
class Mergesort

{
public static void main(String args|])throws IOException

{
DatalnputStream d=new DatalnputStream(System.in);
int m,n,i,j,k temp;
System.out.println("enter the size of the first array");
m=Integer.parselnt(d.readLine());
int a[]=new intfm]|;
System.out.println("enter the elements into the first array");
for(i=0:1<m:1++)
{
ali]=Integer.parselnt(d.readLine());
}
System.out.println("enter the size of the second array");
n=Integer.parselnt(d.readLine());
int b[|=new int[n];
System.out.println("enter the elements into the second array”);

for(j=0;j<n;j++)

—————————————————————

DataStructures

blj]=Integer.parselnt(d.readLine());
}
System.out.println("A pplying sorting on first array”);

for(i=0:1<m:i++)

{
for(j=i+1;j<m;] ++)
{
if(ali]>aljl)
{
temp=4[i];
ali]=alj];
alj]=temp;
}
}
}

System.out.println(" A pplying sorting on second array");

for(i=0:1<n;i++)

{
for(j=i+1;j<n;j++)
{
if(b[i]=b[j])
{
temp=bli];
bl1]=b[j];

——

blj]=temp;

}

System.out.println("the first array elements are");
for(i=0:1<m:i++)
{
System.out.println(a[i]);
}
System.out.println("the second array elements are");
for(j=0;)<n;)++)
{
System.out.printin(b[j]);
}
i=0;j=0;k=0;
int c[|=new int[m-+n];
while((i<m)&&(j<n))
{
if(a[i]<b(jl)
{
clk]=ali];
k++;

1++

DataStructures

DataStructures

{
clk]=blj];
k++;
j+
}
if(ali]==alj])
{
clk]=ali];
k++;
clk]=bljl;
k++;
i++
jt+
}
}
while(i<m)
{
clk]=ali];
k++
i++
}
while(j<n)
{
clk]=bljI;
k++;

—

DataStructures

System.out.println("A fter sorting the elements in the resultant array are.....");

for(k=0;k<m+n;k++)
{
System.out.println(c[k]);
}
}
}
Output:

DataStructures

Cemmand Prompt

E:\Naresh\D5% Programs\Sortings»>java MergeSort

Enter size of the first array:
3

Enter elements into the first array

o 20 M

Enter size of the second array:
A

Enter elements into the second array

2

Lo o R

Elements of first array are....

2 & &

Flements of second array are....

12 5 E 9

Array elements after the sorting are....

2 3 5 & a8 9 12
E:\Maresh\D5 Programs\Sortings>_

Quick Sort

Quick sort is a divide-and-conquer sorting algorithm in which division is dynamically
carried out (as opposed to static division in Merge sort).

The time complexity for the quick sort 1s o(nlogn). Where ‘n’ represents the number of
elements.

The three steps of Quick sort are as follows:
Divide:

Rearrange the elements and split the array into two sub arrays by placing an element in
between these two sub arrays so that each element in the left sub armray 1s less than or equal the
middle element and each element in the right sub array is greater than the middle element.

Conquer: Recursively sort the two sub armays.

e

DataStructures

Combine: Since the sub amrays are sorted in place, no work is needed to combing them: the
entire array S 1s now sorted.

Example for Quick Sort

Let us consider the following elements, n=8.

Start Left Scan,

Here our aim 1is to find the element greater than the key 1.e., we increment the [value as
long as we get an element greater than the key.

Now start the nght scan,

Here our aim is to find the element smaller than the key 1., we decrement j value until we
find an element less than the key.

Here i<j, then swap ali], a[j] and continue left scan and right scan.

DataStructures

Now apply left scan,

P‘l'l.'l'lt

| =)
| J;'_—L}I 3

Now apply night scan,

Sub hst-2
_ N\
- 8 4 | Qo) | 16 | 14
'S e N i =

Sub hst-1

Here we again apply the same process for sub list-1 and sub list-2 until each sub list contains
only one element. Finally we get

The following program illustrates the implementation of Quick Sort in java.

Aim: To write a java program to implement the Quick Sort Algorithm.

Program://QuickSort.java

;E“.'il

DataStructures

import java.io.*;
class QuickSort

{
public static void main(String angs[])throws IOException

{
DatalnputStream d=new DatalnputStream(System.in);
int n,1;
System.out.println("enter the size of the array");
n=Integer.parselnt(d.readLine());
int a[]=new int[n];
System.out. println("enter the array elements");
for(i=0:1<n:1++)
{
ali]=Integer.parselnt(d.readLine());
1

System.out. println("before sorting the array elements are");

for(i=0:1<n:i+4+)
{
System.out.println(a[i]);
}
gsort(a,0,n-1);
System.out.println("after sorting array elements are");

for(i=0:i<n;i++)

—

DataStructures

{
System.out.println(ali]);
|
}
public static void gsort(int a[],int first,int last)
{
int 1,],pivot,temp;
if(first<last)
{
pivot=first;
1=first:
j=last;
while(i<)
{
while((ali]<=a[pivot]) & & (i<last))
i++;
while(alj]>al pivot])
s
if(igy)
{
temp=ali];
ali]=alj];
alj |=temp;
}
1

DataStructures

temp=a[pivot];

al pivot]=alj];

alj]=temp;
gsort(a,first,j-1);

qsort(a,j+1,1ast);

}
}
}
Output:

E:\Naresh\DS Programs)\Sortings>javac QuickSortl. java

E: \Naresh\DS Programs\Sortings>java QuickSortl
Enter size of the array:
8

Enter elements into the array
18

5

2

8

16

6

A

14

Flements after sorting
245 6 8 189 14 16

E:\Naresh\D5 Programs\Sortings>

DataStructures

Max Heap Binary Tree

Mode § o greater then s Lell cheldd & and Hght chidd 5

Node 5 i= greatars then ds Lelt child 2 and Right child 1

i wimaler thaody s Ll child 2 aod B i} il cliled 3

hode) s smaller thean its Lel chilld & and H..__'-I t child I

DataStructures
|
I

Heapify Process
REEEE
= 1 2 3 &

Represent array into
Complete Binary Tree.

I

Index @ (4)

l'h L'

-
Index 1 (10)

.3) Index 2

¥ "dl

Index 3 {E:I Eii Index 4
We need to start heapify process from Node at index

= (array size/2)-1 =(3/2)-1=2-1=1

Check parent Node 10 is greater then Left child 5 and Right child 1.

|

1 SAlISTY MaXx-Nneap property

(4)
AR 10
e 1 2 3

Index l{iéj

fES. Node atindex

1
4

’ = -."F: .:-q-"-_ - %
|

(5,

DataStructures

Check parent Node 4 is greater then Left child 10 and Right child 3
NO. Replace 4 with maximum from (4, 10, 3]

Mode at index 1 is replaced with Node at index 0

Now, Node 0 is satisfying max-heap property but Node at
index 118 disturbed and not satisfying max-heap propenrty,
50 apply heapity process on Node at index 1

Check parent Node 4 is greater then Left child 5 and Right child 1

MO, Replace 4 with maximum from (4, 3,1

Index 3 | & |

Mode at index 1 is replaced with Node at index 3

S
10

Nocde 10 is at proper place, So it will not be part of further heapify process.
Node 1 when placed at the root, again disturbed heapify process at index 0.
Repeat Heapify process at index 0.

DataStructures

Check parent Node 1 is greater then Left child 5 and Right child 3

MU, Heplace 1 with maximum from (1 b

Node at index 1 is replaced with Node at index 0,

Now, Node 0 is satisfying max-heap property but Node at
index 1 is disturbed and not satisfying max-heap propery
50 apply heapify process on Node at index 1

Check parent Mode 1is greater then Left child 4
)

2. Heplace 4 with maximum from [1.4)

Index 3 |1

Node at index 1 is replaced with Node at index 3

I:"-,. al
o0

DataStructures

Node 5 is at proper place, So it will not be part of further heapify process.
Node 1 when placed at the root, again disturbed heapify process at index 0.
Repeat Heapify process at index 0.

Check parent Node 1 is greater then Left child 4 and Right child 3
NO., Replace 1 with maximum from (1. 4. 3},

LE ST 3

DataStructures

-

- \
Index 1/ 3)
/ \
£ ,
s B S
{ 5 118
gy .

Now, only 1 item is remaining which doesn’'t has any child and is leaf node, Node
1 which satisfy heap property and is already placed at its proper place.

Stop HEAPIFY process.
All elements are sorted now.

1@

DataStructures

The following program illustrates the implementation of Heap Sort in java.
Aim: To write a java program to implement the Heap Sort Algorithm.
Program://HeapSort.java

import java.io.*;

class HeapSort

{

public static void main(String args|])throws IO Exception
{
DatalnputStream d=new DatalnputStream(System.in);
int n,Lt;
System.out. println(“enter the size of an array");
n=Integer.parselnt(d.readLine());
int a[|=new int[n+1]:
System.out.println("enter the elements into the array");
for(i=1;i<=n;i++)
{
ali]=Integer.parselnt(d.readLine());
}
System.out.println("before sorting array elements are");

for(i=1;i<=n;i++)

{

System.out.println(a[i]);
}
for(i=n:i>0:i--)

—————————————————————————

DataStructures

{
hsort(a,1);
t=ali];
ali]=a[1];
all]=t;

}

System.out.println("after sorting the array elements are");

for(i=1;i<=n;i++)

{
System.out.println(a[i]);
1
}
public static void hsort(int a[],int n)
{
int j,temp;

for(j=2;j<=n;j++)

{

it(alj]>alj/2])

{
temp=aj;
alj]=alj/2];
alj/2]=temp;
if(j/2>1)

hsort(a,j/2);
}

7 B

DataStructures

OUTPUT:

enter the size of an array

5

enter the elements into the array
34

1

af

29

41

betore sorting array elements are
34

1

o7

29

41

after sorting the array elements are
1

29

34

41

6/

————————————————————————

W hat is Sparse Matrix

In computer programming, a matrix can be defined with a 2-dimensional array. Any array
with 'm' columns and 'n' rows represents a mXn maitnx. There may be a situation in which a
matrix contains more number of ZERO values than NON-ZERO wvalues. Such matrix is known
as sparse matnx.

Sparse matrix is a matrix which contains very few non-zero elements.

Sparse Matrix Representations

A sparse matrix can be represented by using TW O representations, those are as follows...
1. Trplet Representation
2. Linked Representation

Triplet Representation

In this representation, we consider only non-zero values along with their row and column
index values. In this representation, the 0™ row stores total rows, total columns and total non-
zero values in the matrix.

For example, consider a matrix of size 5 X 6 containing 6 number of non-zero values. This
matrix can be represented as shown in the image...

e

OO L~ OO
20 GO
5 L i Qi i L o5 ot
O ON OO
OO OoOWw
o R R o T - e

In above example matrix, there are only 6 non-zero elements (thoseare 9, 8, 4, 2, 5 & 2)
and matnx size 1s 5 X b. We represent this matrix as shown in the above image. Here the first
row in the right side table is filled with values 5, 6 & 6 which indicates that it is a sparse matrix
with 5 rows, 6 columns & 6 non-zero values. Second row is filled with 0, 4, & 9 which indicates

the value in the matrix at Oth row, 4th column is 9. In the same way the remaining non-zero
values also follows the similar pattem.

Linked Representation

In linked representation, we use linked list data structure to represent a sparse mafrix. In
this linked list, we use two different nodes namely header node and element node. Header node
consists of three fields and element node consists of five fields as shown in the image...

Header Node Element Node

Consider the above same sparse matrix used in the Triplet representation. This sparse matrix can
be represented using linked representation as shown in the below image...

In above representation, HO, H1,...,H5 indicates the header nodes which are used to
represent indexes. Remaining nodes are used to represent non-zero elements in the mafnx,
except the very first node which is used to represent abstract information of the sparse matrix
le, It 1s a mamx of 5 X 6 with 6 non-zero elements).

In this representation, in each row and column, the last node right field points to it's
respective header node.

STACK AND ITS APPLICATIONS

» Stack is a linear data structure in which the insertion and deletion operations are

performed at only one end known as top end.
» In stack, the insertion and deletion operations are performed based on LIFO (Last In

First Out) principle.

» The process of inserting elements into the stack is called "push" and the process of
deleting elements from the stack is called “pop" .
Initially the top is set to -1.

tf'

Finally, the stack data structure can be defined as follows...

Stack is a linear data structure in which the operations are performed based on LIFO
principle.

Operation on Stack

The following fundamental operations on stack can be carmied out through static
implementation called array implementation. We will perform the following operations on the
stack:

» PUSH: Inserting an element into the stack
» POP: Deleting an element from the stack
» Display: Displaying all the elements of stack

Implementation of Stack

Stack can be implemented in two ways:
1. Amay Implementation of stack (or static implementation)
2. Linked list implementation of stack (or dynamic)

Array (static) implementation of a stack

It is one of two ways to implement a stack that uses a one dimensional array to store the
data. In this implementation top is an integer value (an index of an array) that indicates the top
position of a stack. Each time data is added or removed, top is incremented or decremented
accordingly, to keep track of current top of the stack. By convention, in Java implementation the
empty stack is indicated by setting the value of top to -1(top=-1).

Algorithm for Push operation on stack

The insertion of element onto the stack is called as “push™ 1.e. when an 1item 1s added to
the stack the operation is called "push”.

To insert an element into the stack first we need to check the following condition.

if(top==size-1)

{
Stack is overtlow;
1
else
{
top++;
stk[top]=ele;
} = -
Push (§ Push (4 Push (3 |
Top | 3
Top—» 4 ___4 o
Tﬂp | Tﬂp - 5 5 5
Fig. Insertion of Elements in a Stack
Stack Overtlow

Any attempt to insert a new element in already full stack is results into Stack Overflow.

——————————————————————

w it

Algorithm for POP operation on stack

The deletion operation is called "pop i.e., when an item is removed from the stack the
operation 1s called "pop".

To POP an element from the stack first we need to check the following condition.

if(top==1)
{
Stack is underflow:
}
else
{
d=stk[top]
top--;
}
10 “ Er
SN =)
REack inhdly Fop(15) pip{12) £op 10
Fi3.5.3 Fopaperation with stack

Stack Underflow

Any attempt to delete an element from already empty stack results into Stack Underflow.

The following program illustrates the implementation of Stack data structure using arrays.
Aim: To write a java program to implement the operations of stack data structure using arrays.
Program: StackDemo.java

import java.lo.*;

import java.util.*;

import java.lang.*;

class Stack

{

———————————————————————

int s[],top,max;

Stack(int size)

{
max=size;
top=1;

s=new int{max]:

}
void push(int ele)
{
if(top==max-1)
{
System.out.println("Stack is Overflow");
1
else
{
top++
s[top]=ele;
System.out.printin(s[top]+"element inserted into the stack");
}
}
void pop()
{
int ele;
if(top==1)
{

System.out.println("stack is underflow");

B

else
{
ele=s[top];
System.out.println(s[top]+"element deleted from the stack");
top--;
}
}
void display()
{
if(top==-1)
{
System.out.println(" Stack is empty");
}
else
{
System.out.println(" the stack elements are ");
int i;
for(i=top;i>=0;i--)
{
System.out.println(s[i]);
}
1
}

}

class StackDem
{
public static void main(String args|])
{
Scanner d=new Scanner(System.in);
System.out.printin("Enter size of the stack:");
int n=d.nextInt();
Stack s=new Stack(n);
int ch;
do
{
System.out.println("\n\n");
System.out.println("1.Push");
System.out.println("2.Pop");
System.out.println("3.Display");

System.out.printin("4.Exit");

System.out.println(" Enter your choice");
ch=d.nextInt();
switch(ch)
{
case 1:
System.out.println(" Enter an element");
int x1= d.nextInt();

s.push(x1);

_GI—

break;
case 2:
s.pop();
break;
case 3:
s.display();
break;
case 4:
System.out.println("Exit from the stack");
break;

}
twhile(ch!=4);

Output:

8" C:\Program Files (x86)\EditPlus 2\launt

Ll

=r Mm L

= o

EE 2R 2L E R 22 SRR LR R L2 R R R SRR LR R SRR SR EEEE LR EE L E L £

A pplications of Stack
Stack is used directly and indirectly in the following fields:

» To evaluate the expressions (postfix, prefix)
» To keep the page-visited history in a Web browser
» To perform the undo sequence in a text editor

—

Used in recursion

To pass the parameters between the functions.

Can be used as an auxiliary data structure for implementing algorithms
Can be used as a component of other data structures

Y v

Y v

Recursion

Recursion is a process by which a function calls itself repeatedly, until some specified
condition has been satisfied. The process 1s used for repetitive computations in which each action
is stated in terms of a previous result. In order fo solve a problem recursively, two conditions
must be safisfied. First, the problem must be written in a recursive form, and second, the problem
statement must include a stopping condition.

Finding factorial of a number in J ava using R ecursion

The factorial of a number be found using recursion also. The base case can be taken as the
factorial of the number 0 or 1, both of which are 1. The factorial of some number n is that
number multiplied by the factorial of (n-1). Mathematically,

factorial (0) =1
factorial (n) =n* factorial (n- 1)

Given below is a program which calculates the factorial of a given number using recursion.

Aim: To write a java program to find the factonal of a given number using recursion.
Program: Factorial.java

import java.util.Scanner;

class Factonial

{
public static void main(String|] args)
{
int n, fact;
Scanner s = new Scannern System.in);
System.out.print("Enter any integer:");
n =s.nextint():
if(n<0)
{
System.out.println(" Factorial not posible");
}
else
{
fact = findFact(n):
System.out.println("Factorial of "+n+" :" +fact);
}
}
static int findFact(int x)
{

——————————————————————

if(x >1)
{
return(x * findFact(x - 1))

}

retum 1;

}

}
Output:

B C\Program Files (x86)\EditPlus 2\launcher.exe ' C:\Program Files (x86)\EditPlus 2\launcher.exe

A e e sk ok o o e o ok o o o e o o o o o ok o o e ok ok ok o e e ol o o e ol oo o ol ok e ok ol e e ol ok o ke o o e e o e sl ok o e e ol ol o o e ke e o ok e sl o ok o e ok ke o ok

Expressions

An expression can be defined as follows...

An expression is a collection of operators and operands that represents a specific value.

In above definition, operator is a symbol which performs a particular task like arithmetic
operation or logical operation or conditional operation etc.,

O perands are the values on which the operators can perform the task. Here operand can
be a direct value or variable or address of memory location.

Expression Types

Based on the operator position, expressions are divided into THREE types. They are as follows...
1. Infix Expression
2. Postfix Expression

3. Prefix Expression

Infix Expression

In infix expression, operator is used in between operands.

The general structure of an Infix expression is as follows...

—

Operand1 Operator Operand2

Example

Postfix Expression

In postiix expression, operator is used after operands. We can say that "Operator follows
the O perands".

The general structure of Postfix expression is as follows...
Operandl Operand2 Operator

Example

Operand1 gra nd2 Operator
)

|
"-r‘]f}
E._::'|IIi

ab¥

Prefix Expression

In prefix expression, operator is used before operands. We can say that "Operands
follows the O perator".

The general structure of Prefix expression is as follows...

Operator Operand] Operand?2

Example

Operator E}E_:f—.'-rarwd1 : Operand2
E \ £
+ab
Any expression can be represented using the above three different types of expressions.

And we can convert an expression from one form to another form like Infix to Postfix, Infix to
Prefix, Prefix o Postfix and vice versa.

o o o ol o ol o e ok o ok 3k o ok ok o s o s ol sk ol ol ofe o o o ofe ok ok ok ok o ok ol o ol ol ok o ol ofe ok o 3k ok sk ok ok ok ok s sk sl ol ok o ok o ok o i ok K o ok o o s o sl ol ol ol ok ol o o o o o ok ok ok o

———————————————————————

Expression Conversion

Any expression can be represented using three types of expressions (Infix, Postfix and Prefix).
We can also convert one type of expression to another type of expression like Infix to Postfix, Infix to
Prefix, Postfix to Prefix and vice versa.

Infix to Postfix Conversion using Stack Data Structure

To convert Infix Expression into Postfix Expression using a stack data structure, We can use the following
steps...

1. Read all the symbols one by one from left to right in the given Infix Expression.
2. If the reading symbol is operand, then directly print it to the result (Output).
3. If the reading symbol is left parenthesis '(’, then Push it on to the Stack.

4. |If the reading symbol is right parenthesis '), then Pop all the contents of stack until respective
left parenthesis is poped and print each poped symbol to the result.

5. If the reading symbol is operator (+, -, *, / etc.,), then Push it on to the Stack. However, first
pop the operators which are already on the stack that have higher or equal precedence than
current operator and print them to the result.

Example

Consider the following Infix Expression...

(A+B)*(C-D)

The given infix expression can be converted into postfix expression using Stack data Structure as
follows...

Reading character Stack Postfix expression

Illitiall}r Stack is EM Empt}(

(Posh [. Empty
é

—

NO oparahon
Since 'A' s OPERAND

+ Nas Iow pricnTy
than '[" so,
PUSH "4+

MO operation
Since 'B' is OPERAND

AB

FOP all elemeants hil
we reach |

| LR o

rPOP "

AB+

Stack is EMPTY
&
* s Operator
PUSH 'Y

AB+

PUSH *|’

AB+

MO operation
Since 'C' i1s OPERAND

AB+C

w it

I"r:'r.-'

AB+CD

D Mo operation
Since 'D" iIs OPERAND

._‘:."_l
-' has low priority
- than '[" s0. AB.H:
PUSH *-'

FLOP all elemeants till
we recach [

) or - AB4CD-

o r:

POP all elements fill

End of expression Stack becomes Empty

The final Postfix Expression is as follows...

AB+CD-*

The following is the java program to convert an Infix expression into a Postfix expression using
stack data structure.....

Aim: To write a java program to convert an infix expression into postfix expression using stack data
structure.

/*InToPost.java*/
import java.io.*;

class stack
{
char sl|];
int top;
stack(int len)
{
S[l=new char[len];
top=-1;
}

——————————————————————

void push(char ch)

{
top++;
stop]=ch;
1
char popl()
i
char ch;
ch=s[top];
top--;
return ch;
I
int pre(char ch)
{
switch(ch)
{
case ="return(;
case -:return 1;
case '+:return 1;
case '"*":return 2;
case '/":return 2;
1
return O;
I
boolean operator(char ch)
i
if(ch=="/"| |ch=="*'| [ch=="+'| | ch=="-"| | ch=="=)
return true;
else
return false;
}
boolean isOperand(char ch)
i
if[ch>='a'&&ch<='2'| |ch>='A'&&ch<='Z'| | ch>='0'&&ch<='9")
return true;
else
return false;
}
void postfix(String str)
{
char output[]=new char|[str.length()+1];
char ch;
int p=0,i;
for(i=0:i<str.length();i++)
{
ch=str.charAt(i);
if(ch=="(')
{

—

push(ch);

!
else if{isOperand(ch))
{
output[p++]=ch;
}
else ifloperator(ch))
{
if(top==-1| | (pre(ch)>=pre(stack1[top]))| | stackl[top]=="(')
{
push(ch);
}
else if(pre(ch)<pre(stackl[top]))
{
output[p++]=pop();
push(ch);
I
!
else if(ch==")")
{
while((ch=pop())!='(')
{
output[p++]=ch;
}
}
1
while(top!=-1)
{
char c=pop();
if(c!="('&& c!="))
output[p++]=c;
}
for(int j=0;j<str.length();j++)
{
System.out.print(output[j]);
!
}
}
class InToPost
{

public static void main(String[] args)throws Exception

{
DatalnputStream d=new DatalnputStream(System.in);
String s;
System.out.printin("Enter input string");
s=d.readLine();

int len=s.length();
stack b=new stack(len);

_]_ﬁl—

System.out.printin("InString:"+s);
System.out.println{"Qutput String:");
b.postfix(s);

Output:

#° C\Program Files (x80)\EditPlus 2\launcher.exe

o obe ol ok o o of o ol ke ol ok ok ok e e ol ok e ol ol ol ofe ok ok ol ol e ofe ok ok e ol ol o e ol ol ol e ofe ok ol ol o ol ol ok e e o ol ol e ol ol ol ol o ol ofe ol e ol ofe ke ol ol ol ol e ol o ol e ol e ol e o ol ofe ok o ok

Postfix Expression Evaluation

A postfix expression is a collection of operators and operands in which the operator is placed
after the operands. That means, in a postfix expression the operator follows the operands.

Postfix Expression has following general structure...
Operandl Operand2 Operator

Example

Operandl -, Opgrand2 __ Operator
y [f?
/! I /' NS
Postfix Expression Evaluation using Stack Data Structure

A postfix expression can be evaluated using the Stack data structure. To evaluate a postfix expression
using Stack data structure we can use the following steps...

1. Read all the symbols one by one from left to right in the given Postfix Expression
2. If the reading symbol is operand, then push it on to the Stack.

3. If the reading symbol is operator (+, -, * , / etc.,), then perform TWO pop operations and store
the two popped oparands in two different variables (operandl and operand2). Then perform
reading symbol operation using operandl and operand2 and push result back on to the Stack.

4. Finally! perform a pop operation and display the popped value as final result.

————————————————————————

Example

Consider the following Expression...

Infix Expression (5 + 3) * (8 - 2)
Postfix Expression 5 3 + 8 2 - *

The above postfix expression can be evaluated by using stack data structure as follows

Reading Symbol Stack Operations Evall;;itrz:j: of
In[tla”y Stack is Empty Nﬂthlng
) push(S) Nathlng
3 push(3) Nothing
I valuel = pop(); // 3
valuel = popl) value2 = pop(); // 5
" value2 = pop() - result = 5 + 3; // 8
result = value2 + valuel - Push(8)
push(result) ﬂ (5 + 3)

——————————————

8 push(8) (5 + 3)

- push(2) (5 + 3)

valuel = pop(); // 2
value2 = pop(); // B

result=8-2//6
Push(6)

(8 - 2)
(5+3),(8-2)

valuel = popl(); // 6
value2 = pop(); // 8

result =8*6; /f 48
Push(48)

(67.8)

(5+3)*(8-2)

$ Display (result)
End of Expression result = pop() 48

valuel = pop()
value2 = pop()

result = value? - valuel

push(result)

valuel = pop()
value2 = pop()

result = value2 * valuel

push(result)

As final result

Infix Expression (5 + 3) * (8 -2) = 48
Postfix Expression 5 3 + 8 2 - * value is 48

The following is the java program to evaluate a Postfix expression using stack data structure.....

—

Aim: To write a java program to evaluate a Postfix expression using stack data structure.
/*PostfixEvaluation.java®/

import java.io.*;
class Stack
{
int a[],top,max;
Stack(int size)
{
max=size;
a=new int[max];
top=-1;
}
void push(int ele)
{
top++;
altop]=ele;
!
int pop()
{
int ele;
ele=altop];
top—;
return(ele);
}
}

class Evaluation

!

int calculate(String s)throws |OException

{

DatalnputStream d=new DatalnputStream(System.in);
int n,r=0;
n=s.length();
Stack a=new Stack(n);
for(int i=0;i<n;i++)
{

char ch=s.charAt(i);

if(ch>="0'&&ch<="9")

a.push((int){ch-'0"});
else if((ch>='a'&& ch<='Z'}| | (ch>="A'&&ch<="'Z"))

{
System.out.printin("Enter value for " + ch + ":");
int op=Integer.parselnt(d.readLline());
a.push(op);
}
else
{

int x=a.pop();
int y=a.pop();

m—

switch(ch)
{
Case '+ :r=x+y;
break;
case -r=y-x;
break;
case *:r=x"y;
break;
case "/:ir=y/x;
break;
default:r=0:
1
a.push(r);
}
}
r=a.pop();
return(r);
}
}

class PostfixEvaluation

{

public static void main(String args[])throws |OException
{
DatalnputStream d=new DatalnputStream(System.in);
String str;
while(true)

1

System.out.printin{"Enter the postfix expresion”);
str=d.readLine();
if(str.equals("stop"))

break;
Evaluation e=new Evaluation();
System.out.println("Result:- "+e.calculate(input));

}
J

Output:

B " C:\Program Files (x86)\EditPlus 2\launcher.exe

—

-I.I_‘n

UNIT: III
TREE DATA STRUCTURE

Trees: Binary Tree, Definition, Properties, ADT, Amay and Linked representations,
Implementations and A pplications.
Binary Search Trees (BST): Definition, ADT, Operations and Implementations, BST A pplications.
Threaded Binary Trees, Heap trees.
Introduction:

In linear data structure, data is organized in sequential order and in non-linear data structure;

data is organized in random order. Tree is a very popular data structure used in wide range of
applications. A tree data structure can be defined as follows...

Tree is a non-linear data structure which organizes data in hierarchical structure and this is a
recursive definition.

A tree data structure can also be defined as follows...

Tree data structure is a collection of data (Node) which is organized in hierarchical structure
and this is a recursive definition.

In tree data structure, every individual element is called as Node. Node in a tree data structure, stores
the actual data of that particular element and link to next element in hierarchical structure.
In a tree data structure, if we have N number of nodes then we can have a maximum of

N-1 number of links.

Example

TREE with 11 nodes and 10 edges

In any tree with "N’ nodes there

;‘ will be maximum of ‘N-1" edges
@ G \G:) ® - In a tree every individual
¥ element is called as “NODE’

-l'l.‘ﬁ

Tree Terminology
[n a tree data structure, we use the following terminology...
1. Root
In a tree data structure, the first node is called as Root Node. Every tree must have root node.

We can say that root node is the ongin of tree data structure. In any tree, there must be only one root
node. We never have multiple root nodes in a tree.

®

Here ‘A’ is the ‘root’ node

- In any tree the first node is
called as ROOT node

2. Edge
In a tree data structure, the connecting link between any two nodes is called as EDGE. In a

tree with 'N' number of nodes there will be a maximum of 'N-1' number of edges.

P4 @ Edge

-

- In any tree, ‘Edge’ is a connecting

(B)
% link between two nodes.
® ® 6 ®
3. Parent

In a tree data structure, the node which is predecessor of any node is called as PARENT
NODE. In simple words, the node which has branch from it to any other node is called as parent
node. Parent node can also be defined as "The node which has child / children".

Wil

FON

Here A, B, C, E & G are Parent nodes

©

- In any tree the node which has
child / children is called ‘Parent’

@

- A node which is predecessor of
any other node is called ‘Parent’

4. Child

In a tree data structure, the node which is descendant of any node is called as CHILD Node.
In simple wonds, the node which has a link from its parent node is called as child node. In a tree, any

parent node can have any number of child nodes. In a tree, all the nodes except root are child nodes.

Here B & C are Children of A
Here G & H are Children of C

Here K is Child of G

- descendantof any node is called
as CHILD Node

5. Siblings
In a tree data structure, nodes which belong to same Parent are called as SIBLINGS. In
simple words, the nodes with same parent are called as Sibling nodes.

Here I & C are Siblings
Here D E & F are Siblings
Here are Siblings

Here | & | are Siblings

- In any tree the nodes which has
same Parent are called ‘Siblings’

- The children of a Parent are
called ‘Siblings’

-l'l.‘ﬁ

6. Leaf
In a tree data structure, the node which does not have a child is called as LEAF Node. In

simple words, a leaf is a node with no child.
In a tree data structure, the leaf nodes are also called as External Nodes. External node is also

a node with no child. In a tree, leaf node is also called as 'Terminal’ node.

Here D, |, J, F, K & H are Leaf nodes

- In any tree the node which does
not have children is called ‘Leaf’

@ ® ® - A node without successaors is
called a ‘leaf’ node

7. Internal Nodes
In a tree data structure, the node which has atleast one child is called as INTERNAL Node. In

simple words, an internal node is a node with atleast one child.
In a tree data structure, nodes other than leaf nodes are called as Internal Nodes. The root

node is also said to be Internal Node if the tree has more than one node. Internal nodes are also

called as 'Non-Terminal' nodes.

@ Here A, B, C, E & G are Internal nodes

- In any tree the node which has atleast

e G one child is called ‘Internal’ node

- Every non-leaf node is called
e as ‘Internal’ node

8. Degree

In a tree data structure, the total number of children of a node is called as DEGREE of that
Node. In simple words, the Degree of a node is total number of children it has. The highest degree of
a node among all the nodes in a tree is called as 'Degree of Tree'

4

-l'l.‘ﬁ

@ Here Degree of Bis 3

Here Degree of Ais 2
Here Degree of Fis 0

In any tree, ‘Degree’ a node is total
@ @ number of children it has.

9. Level

In a tree data structure, the root node is said to be at Level 0 and the children of root node are
at Level 1 and the children of the nodes which are at Level 1 will be at Level 2 and so on... In simple
words, in a tree each step from top to bottom is called as a Level and the Level count starts with 0
and incremented by one at each level (Step).

/@\ Level O
e Level 1
"-..,'_
FOOE ® | w
N
0 @ Level 3
10. Height

[n a tree data structure, the total number of egdes from leaf node to a particular node in the
longest path is called as HEIGHT of that Node. In a tree, height of the root node is said to be height
of the tree. In a tree, height of all leaf nodes is '0'.

Wil

Here Height of tree is 3

- In any tree, ‘Height of Node' is
total number of Edges from leaf
to that node in longest path.

- In any tree, ‘Height of Tree’ is
the height of the root node.

11. Depth
[n a tree data structure, the total number of egdes from root node to a particular node is called
as DEPTH of that Node. In a tree, the total number of edges from root node to a leaf node in the

longest path is said to be Depth of the tree. In simple words, the highest depth of any leaf node in a
tree is said to be depth of that tree. In a tree, depth of the root node is '('.

@ Depthis D

Here Depth of tree is 3

Depthis 1
- In any tree, ‘Depth of Node' is
total number of Edges from root

to that node.
@ e @ - In any tree, ‘Depth of Tree" is
; total number of edges from root
to leaf in the longest path.

12. Path

In a tree data structure, the sequence of Nodes and Edges from one node to another node is
called as PATH between that two Nodes. Length of a Path is total number of nodes in that path. In
below example the path A - B - E -] has length 4.

Wil

- |n any tree, ‘Path’ is a sequence
ot nodes and edges between two
nodes.

Here, ‘Path’ between A& Jis
A-B-E-)

Here, ‘Path’ between C & K is
C-G-K

13. Sub Tree
In a tree data structure, each child from a node forms a subtree recursively. Every child node

will form a subtree on its parent node.

Subtree

o 2 e e ok ok ofe o e o o ok obe o sk 3 ok ok ok e ok sk o ke o e e e ke e ofe e e ok ofe ofe e e ke ok o ofe o s sk o o ok ok e ok ok ok e e e e ke e e ok e e ke o ofe e e e ok ok o o sk ok ok of ok ok

Binary Tree
In a normal free, every node can have any number of children. Binary tree is a special type of
tree data structure in which every node can have a maximum of 2 children. One is known as left

child and the other is known as right child.

A tree in which every node can have a maximum of two children is called as Binary Tree.

In a binary tree, every node can have either 0 children or 1 child or 2 children but not more
than 2 children.

-l'l.‘ﬁ

Example

FON

AR

@ o
® 06 ©
OO0
There are different types of binary trees and they are...
1. Strictly Binary Tree
In a binary tree, every node can have a maximum of two children. But in strictly binary tree,

every node should have exactly two children or none. That means every internal node must have
exactly two children. A strictly Binary Tree can be defined as follows...

A binary tree in which every node has either two or zero number of children is called Strictly
Binary Tree

Strictly binary tree is also called as Full Binary Tree or Proper Binary Tree or 2-Tree

PN
e i
® ,\@ G ®

r X
ONO.

-I.I_‘ﬁ

Strictly binary tree data structure is used to represent mathematical expressions.

Example

O R

- s g .
__.-" ™ - "‘-\.\,H.
"'\-\.H __.-"

A A
® ©

(A+B)*C A+B*C

2. Complete Binary Tree

A binary tree in which every internal node has exactly two children and all leaf nodes are at
same level is called Complete Binary Tree.

At every level of complete binary tree there must be 2" number of nodes. For example at
level 2 there must be 2 =4 nodes and at level 3 there must be 2° = 8 nodes.
Complete binary tree is also called as Perfect Binary Tree

,f- f\ ,q Q
OCO® OO OO O
3. Extended Binary Tree

A binary tree can be converted into Full Binary tree by adding dummy nodes to existing nodes
wherever required.

The full binary tree obtained by adding dummy nodes to a binary tree is called as Extended
Binary Tree.

-l'l.‘ﬁ

3 0 r_“l@ @I'_'I
Y B

,f-"@“‘x
o
® @ E\E) @ oD@ ®
® ©

In above figure, a normal binary tree is converted into full binary tree by adding dummy

nodes (In pink color).
Feokeok deokok ok ke ok ke sk ko dkesk R ke e ke sk kol ko R ke e Rk ke e koo sk ke ek e ke ke ke ke R ok sk ke ke sk e ke ke ok ke ok ke sk kR e s ok sk ko kosk R e R Rk ok ok ok

Binary tree Properties: Binary Tree is a special data structure used for data storage purposes. A

binary tree has a special condifion that each node can have a maximum of two children.

@
® @

@ 6 ®
3. Maximum number of nodes in a binary tree of height ‘h’ is 2" — 1. @ @

1. A binary tree of n elements has n-1 edges.
2. A binary tree of height h has at least h elements.

4. The maximum number of nodes at level ‘1 of a binary tree is 2.

5. In a Binary Tree with N nodes, minimum possible height or minimum number of levels is |
Log2(N+1) | .

6. A Binary Tree with L leaves has atleast [LogzL | +1 levels.

7. In Binary tree, number of leaf nodes is always one more than nodes with two children.

2% o 2 ok 2 e ke e ok ok ok ok ok ok o ok ok ok ok sk sk ke ok ok ook ok 3k ok s ok o ok s i ok ok ko ok of ok o ke e ol ok e ok 2k o ok ok ok ok ok sk sk o e ol ok ok ok ok ok ok o o ok ok ok ok ko ok ok ok

Binary Tree Representations
A binary tree data structure is represented using two methods. Those methods are as follows...

1. Array Representation
2. Linked List Representation

Consider the following binary tree...

—————————————————————

-l'l.‘ﬁ

H-'\"'-\-\.
B

o

M

J‘E,lxh | Exh
® 06 ®
© 0O ®

1. Array Representation
[n array representation of binary tree, we use a one dimensional array (1-D Array) to represent

a binary tree.
In the array approach, the nodes are stored in an array and are not linked by references. The

position of the node in the array corresponds to its position in the tree. The node at index 0 is the root,
the node at index 1 is the root's left child, and so on, progressing from left to right along each level of
the tree.

Every position in the tree whether it represents an existing node or not, corresponds to a cell
in the array. Adding a node at a given position in the free means inserting the node into the equivalent

cell in the array. Cells representing tree positions with no nodes are filled with zero or null.

Consider the above example of binary tree and it is represented as follows...

[ATBTETDT FTGIATT T3 T=T= [-TRL-T == [-[-T-[-T-]

A node's children and parent can

Array
50
25
75

null
a7
62
64

null

null
31

43
e
null

null
92

be found by applying some simple
arithmetic to the node's index number in

the ammay. If a node's index number is
index, then this node's left child is

2¥index + 1 its right child is 2*index + 2
and its parent i1s (index-1) / 2.

0 -~ & ¢ B WOMN - S

e

To represent a binary free of

— el
—i g

depth 'n' using array representation, we

ik
[+

ek
L2

need one dimensional ammay with a

aal
=9

maximum size of 21 - 1.

11

Wil

2. Linked List Representation

We use double linked list to represent a binary tree. In a double linked list, every node
consists of three fields. First field for storing left child address, second for storing actual data and
third for storing right child address.

In this linked list representation, a node has the following structure...

Left Child m Right Child
Address ddress

The above example of binary tree represented using Linked list representation is shown as follows...

5

/ /

/ D‘ \‘ B F MHIALL HULLI

MAULL

MLUILL

MLl PiiRLL _j fHLlI.I. rel L K LFTETR]

o0 2 2 o o e ke e o ok ok ok ok ol o ol o ok i 3 o e o o ok o ok o o o e e i o o o ol ok o o o e ol ol ol e s ok ok ok ool ok o 26 ok o e ol ol ol ok o8 R o ook o ol ol ke o ok ok ok ok

A pplications of Binary Tree:
Binary Tree is a special data structure used for data storage purposes. A binary tree has a
special condition that each node can have a maximum of two children.
1. Implementing routing table in router.

Implementation of Expression parsers and expression solvers

To solve database problem such as indexing.
Expression evaluation.

Binary trees are used in Huffman coding, which are used as a compression code.

1 R e [D9

Binary trees are used in Binary search trees, which are useful for maintaining records of data
without much extra space.

7. One of the most important applications of binary trees is balanced binary search trees like
Red-Black trees, AVL trees.

T

-l'l.‘ﬁ

8. Hash trees, similar to hash tables;

9. Abstract syntax trees for compilation of computer languages
s f e s ok s o o oo o o s ok sk o ko o 8K o o ks ok s o o o o ok ok o o o sk s ok s s o ko o sk ok o o sk s ok ks ok o ko o ook o o ok o sk o o
Binary Search Tree

Binary Search tree exhibits a special behavior.
» A node's left child must have a value less than its parent's value.

» The node's right child must have a value greater than its parent value.

Example

BST Basic Operations
* Insert — Inserts an element in a tree/create a tree.
* Search — Searches an element in a tree.
» Delete — Deletes an element in a tree.
» Preorder Traversal — Traverses a tree in a pre-order manner.
* In order Traversal — Traverses a tree in an in-order manner.

» Post order Traversal — Traverses a tree in a post-order manner.

Insert Operation:

A dding a value to BST can be divided into two stages:
« Search for a place to put a new element;
« [nsert the new element to this place.

The very first insertion creates the tree. Afterwards, whenever an element is to be inserted,
first locate its proper location. Start searching from the root node, then if the data is less than the key
value, search for the empty location in the left sub tree and insert the data. Otherwise, search for the
empty location in the right sub tree and insert the data.

e

Wil

A lgorithm

If root is NULL
then create root node
return

Else If root exists then
begin

compare the data with node.data until insertion position is located
If data is greater than node.data

goto right subtree

else
goto left subtree
end
insert data
end If
Example: 52,8,4,1

Step1: If root is NULL then
Create root node @

Step 2: compare 2 with 5, 2<5 so insert into the left of 5

©
Step 3: 5 < 8 so insert to the right of 5
2 &

Step 4: next element is 4, 4< 2 and 4<5 s0 4 |s add to the right of 2.

Step 5: next elementis 1, 1<5, 1<2 so is added to the left of the 2

14

-l'l.‘ﬁ

Search Operation:

Whenever an element is to be searched, start searching from the root node, then if the data is
less than the key value, searches for the element in the left sub tree. Otherwise, search for the element
in the right sub tree. Follow the same algorithm for each node.

Algorithm
If root.data 1is equal to search.data
return root
else
while data not found
If data 1s greater than node.data
goto right subtree
else

goto left subtree
If data found
return node
endwhile
return data not found

end if

Deleting a node from a binary search tree

There are three cases for deleting a node from a binary search tree.
Case 1: Delete a leaf node
Case 2 Delete a node with one child
Case 3: Delete a node with two children
Case 1: Ddete a leaf node
« Step 1: Find the node to be deleted using search operation
» Step 2: Delete the node using free function (If it is a leaf) and terminate the function

-l'l.‘ﬁ

Case 2: Delete a node with one child:
« Step 1: Find the node to be deleted using search operation
« Step 2:If it has only one child, then create a link between its parent and child nodes.
« Step 3: Delete the node using free function and terminate the function.

Case 3: Delete a node with two children:
« Step 1: Find the node to be deleted using search operation

« Step 2: If it has two children, then find the largest node in its left subtree (OR) the smallest
node in its right subftree.

« Step 3: Swap both deleting node and node which found in above step.

« Step 4: Then, check whether deleting node came to case 1 or case 2 else goto steps 2

« Step 5: If it comes to case 1, then delete using case 1 logic.

« Step 6: If it comes to case 2, then delete using case 2 logic.

« Step 7: Repeat the same process until node is deleted from the tree.

Find minimum element in the right sub Replace 12 with 19. MNotice, that only
tree of the node to be removed. In values are replaced, not nodes. Mow we
current example it is 19. have two nodes with the same value.

— e

-l'l.‘ﬁ

Tree Traversing T echniques

Tree traversal is a process of moving through a tree in a specified order to process each of the
nodes. Each of the nodes i1s processed only once (although it may be visited more than once).
Usually, the traversal process is used to print out the tree.

Unlike linear data structures (Armay, Linked List, Queues, Stacks, efc) which have only one
logical way to traverse them, trees can be fraversed in different ways. Following are the generally
used ways for traversing trees.

1. Inorder Traversal

2. Preorder Traversal

3. Postorder Traversal
Inorder Traversal
Algorithm Inorder (iree)

1. Traverse the left subtree, i.e., call Inorder (left-subtree)
2. Visit the root.
3. Traverse the right subtree, i.e., call Inorder (right-subtree)
In this traversal the left sub free of the given node is visited first, then the value at the given

node is printed and then the right sub tree of the given node is visited. This process is applied
recursively all the node in the tree until either the left sub tree is empty or the right sub tree is empty.

.| 7. Print value

1. Visit left subf a = v < \‘msat right sub tree

5 Print value

.;' | 78
\ __f'l "a_
2. Visit left SUh?é; ~— k‘u’isi‘t ekt Sub tr‘gé__,_f"
ity 32
3. Left sub tree null. o Ty \

4. Print value.

The above INORDER traversal gives: 10, 25, 32, 40, 78

—————————————————————

-l'l.‘ﬁ

Preorder traversal
Algorithm Preorder (tree)
1. Visit the root.
2. Traverse the left subtree, i.e., call Preorder(left-subtree)

3. Traverse the right subtree, i.e., call Preorder{right-subtree)
In this traversal the value at the given node is printed first and then the left sub tree of the

given node 1s visited and then the right sub tree of the given node is visited. This process is applied
recursively all the node in the tree until either the left sub tree is empty or the right sub tree is empty.

1. Print value

2. Visit left sut% ‘ Visit right sub tree

3 Print value |
J ([78) 12. Print value

13. Left sub tree null

.II ..III
b 4 n
] [[.'l-"l'\-l_-""".
4. Visit left sub tjé \‘u’lslt il subafes 14. Right sub tree null

ﬁ_ (32 ﬁLl‘ll 8. Print value

9, Left sub tree null

5. Print value ;
10. Right sub tree null

6. Left sub tree null

The above PREORDER traversal gives: 40, 25, 10, 32,78

Postorder Traversal

Algorithm Postorder (iree)
1. Traverse the left subtree, i.e., call Postorder(left-subtree)
2. Traverse the right subtree, i.e., call Postorden(right-subtree)
3. Visit the root.

[n this traversal the left sub tree of the given node is traversed first, then the right sub tree of
the given node is traversed and then the value at the given node i1s printed. This process is applied

recursively all the node in the tree until either the left sub tree is empty or the right sub tree is empty.

— g —————————————————————

-I.I_‘n

I-' | 15. Print value

1. Visit left suhy w Visit right sub tree

1D Print value

| \ 12. Left sub tree null
| | | I
}\i/fl \ 78 /13. Right sub tree null
: - = -__. - : ""\-\.,._‘_._,_4-"'!]
2. Visitleft sub tr &mm bl e 14. Print value

&
- T—— |.-_|'-
-

s .

3. Left sub tree null

4. Hightsuhtree null \ 1[] | I" 32 .'l 7. Leftsub tree null
5. Print value 4 \ / 8.Right subtree null

" 9 Printvalue

The above POSTORDER traversal gives: 10, 32, 25, 78, 40

o o e e ok ok ofe o o 3 ok of o o S 3 ok ok ok S ok sk o ke e e e el ke e ofe e e ok ofe ofe e e ok ok o o o sk sk ok of o s sk sk ok ok o ok o e ke ke e e e o o o ol e ok ofe o o e ok ok ok o ok

Threaded Binary Tree
A binary tree is represented using array representation or linked list representation. When a

binary tree 1s represented using linked list representation, if any node is not having a child we use
NULL pointerin that position.
In any binary tree linked list representation, there are more number of NULL pointer than

actual pointers.
Generally, in any binary tree linked list representation, if there are 2N number of reference fields,

then N+41 number of reference fields are filled with NULL (N+1 are NULL out of 2N). This NULL
pointer does not play any role except indicating there is no link (no child).
A. J. Perlis and C. Thomton have proposed new binary tree called "Threaded Binary Tree',

which make use of NULL pointer to improve its traversal processes. In threaded binary tree, NULL
pointers are replaced by references to other nodes in the tree, called threads

Threaded Binary Tree is also a binary tree in which all left child pointers that are NULL (in
Linked list representation) points to its in-order predecessor, and all night child pointers that are

NULL (in Linked list representation) points to its in-order successor.

[f there is no in-order predecessor or in-order successor, then it point to root node.

—e——————————————————

-l'l.‘ﬁ

Consider the following binary tree...

@

@/‘ ® @pé

® © ©

To convert above binary tree into threaded binary tree, first find the in-order fraversal of that

In-order traversal of above binary tree...
H-D-1-B-E-A-F-]-C-G
When we represent above binary tree using linked list representation, nodes H, I, E, F,

J and G left child pointers are NULL.
This NULL is replaced by address of its in-order predecessor, respectively (I1to D, Eto B, F to

A,] to Fand G to C), but here the node H does not have its in-order predecessor, so it points to the
root node A.

And nodesH, I, E, J] and G nght child pointers are NULL. This NULL pointers are replaced by
address of 1ts in-order successor, respectively (Hto D, Ito B, Eto A, and | to C), but here the node G

does not have its in-order successor, so it points to the root node A.
A bove example binary tree become as follows after converting into threaded binary tree.

Wil

In above figure threads are indicated with dotted links.
s ks o ok o oo ok o oo o Kok ok o ok o o o ok o s ko o ko o ko o s sk ko o sk ok o ook ok ok o sk ok ok ok sk ok ok ook sk ok ok ok ok ok

Heap Tree
A Complete binary heap tree is a binary tree in which every node other than the leaves has

two children. In complete binary tree at every level, except possibly the last, is completely filled, and

all nodes are as far left as possible.

Complete Binary Tr8& s ninary tree is complets if it follows the sequence of 1. Root Node, 2. Left Node, 3. Right Node.
it cannot break the ordering. A Tree iz still called complete if node has no Right child, left child.
if Hode has no keft child but has right child present then it iz not called complete because it has not followed order sequence,

20 @
& 4 (10)
® 00 © 0

Not Complete Binary Tree

(20) 20 (20)

A I8 |
® ©® f&\@ @@f@

Childs of Node 4 is Lﬂ ﬂ“i'dhﬂim”f:l'gﬂ ?E”&F"“E“‘ Left child of llode 10 is not prasent
present without WIRC TGV T OF RoGe: 9 12 while right child is present.
right chitd of Node 20, present

21

=

Wil

Depending on the ordering, a heap is called a max-heap or a min-heap.

In a Max-heap, the keys of parent nodes are always greater than or equal to those of the
children. In max-heap, Largest element of the Tree is always at top(Root Node).

In a Min-heap, the keys of parent nodes are less than or equal to those of the children. In
min-heap, Smallest element of the Tree is always at top(Root Node).

Max Heap Binary Tree

= < Node 7 is greater then its Left child 6 and Right child 5.
o 5 - Node 5 is greater then its Left child 2 and Right child 1.
® ® @ @
Array representation of above binary Tree: 7 6 5 4 3 |2 1
Min Heap Binary Tree

Node 1 is smaller then its Left child 2 and Right child 3.

Node 3 is smaller then its Left child 6 and Right child 7.

Array representation of above binary Tree: 1 2 J 4 o | 6 7

22

-I.I_‘ﬁ

Implementation of Binary Search Tree Algorithm
import java.util.*;

// Represents a node in the Binary Search Tree.

class Node
{
public int value;
public Node left;
public Node night;
public Node(int value)
{
this.value = value;
}
}
[/ Represents the Binary Search Tree.
class BinarySearchTree
{
public Node root;
public BinarySearchTree insert(int value)
{
Node node =new Node(value):
if (root ==null)
{
root = node;
return this;
}
insertRec(root, node):
return this;
}
private void insertRec(Node latestRoot, Node node)
{

if (latestRoot.value > node.value)

B

-l'l.‘ﬁ

if (latestRoot.left == null)

{
latestRoot.left =node;
}
else
{
insertRec(latestRoot.left, node):
}
!
else
{
if (latestRoot.right ==null)
{
latestRoot.right = node;
}
else
{
insertRec(latestRoot.right, node);
}
}
}
/| Printing the contents of the tree in an inorder way
public void printInorden()
{
printinOrderR ec(root);
System.out.println("");
}

//Helper method to recursively print the contents in an inorder way
private void printinOrderRec(Node currRoot)

{

———————————————————

-l'l.‘ﬁ

if (currRoot == null)
{
refum;

}
printinOrderRec(currRoot.left);

System.out.print(currRoot.value +", ");
printinOrderR ec(currRoot.right);
}
[/{Printing the contents of the tree in a Preorder way.
public void printPreorden()
{
printPreOrderR ec(root);
System.out.println("");

}

[/ Helper method to recursively print the contents in a Preorder way

private void printPreOrderRec(Node curtRoot)
{
if (currRoot == null)
{
retumn;
}
System.out.print(currRoot.value +", ");

printPreOrderRec(currRoot.left);
printPreOrderR ec(currRoot.right);

}
// Printing the contents of the tree in a Postorder way.

public void printPostorden()

{
printPostOrderRec(root);

System.out. println("");

-l'l.‘ﬁ

[/ Helper method to recursively print the contents in a Postorder way
private void printPostOrderRec(Node curtRoot)

{
if (currRoot == null)
{
refurm;
}
printPostOrderRec(currR oot.left);
printPostOrderRec(currRoot.right);
System.out.print(currRoot.value +", ");
}
}
public class BinarySearchTreeDemo
{

public static void main(String[] args)
{

int ch,ele:
BinarySearchTree bst = new BinarySearchTree();

Scanner sc=new Scanner(System.in);
do

n("1.Insert");
n("2.Inorder"):
n("3.Preorder”);
n("4.Postorder"):
n=oExit):

n("Enter your choice:");

System.out.print
System.out.print
System.out.print
System.out.print
System.out.print

System.out.print
ch=sc.nextInt():
switch(ch)

case 1: System.out.println("Enter element to insert:");

———————————————————————

ele=sc.nextInt();
bst .insert(ele);
break;
case 2: System.out.println("Inorder traversal");
bst.printInorden();
break;
case 3: System.out.println("Preorder Traversal");
bst.printPreorder();
break;
case 4: System.out.println("Postorder Traversal");
bst.printPostorden();
break;
case 5: System.exit(0):;
}
twhile(ch!=5);

.Insert

1. Insert
3.Preorder 2.Inorder
4. Postorder 3.Preorder

Fxit 4.Postorder

2. Inorder

Enter your choice: 5. Exit
Enter your choice:

Enter element to insert: |2
10 Inorder traversal
1. Insert 16 20
g 10, 20,
. Inorder 1 Tnsert
i . Preorder .
A Dostard 2.Inorder
. Fostoraer = e
5 Exit 3.Preorder
X X111
= o A .Postorder
Enter your cholce: i
1 .. EXIE

= - — YT & - .—-_—-hr——n.
Enter element to insert: [ENter your choice:

20

-I.I‘tl

UNIT: IV
GRAPHS

Graphs — Graph and its Representation, Graph Traversals, Connected C omponents, Basic

Searching Techniques, Minimal Spanning Trees

Graph

Graph is a non linear data structure; it contains a set of points known as nodes (or vertices)

and set of links known as edges (or Arcs) which connects the vertices.
Generally, a graph G is represented as G = (V , E), where Vis set of vertices and E is set of

edges.
The following is a graph with 5 vertices and 6 edges. This graph G can be defined as
G=(V,E)

WhereV ={A,B,C,D,E} and
E ={(A,B),(A,C)(A,D),(B,D),(C,D),(B,E),(ED)}.

/;? h‘)__._ — (R _/5--* Edge
Vertices e %®
Nesg | o

Example:

The picture above represents the following graph:

» V={1234506}

» E={{1,2},{1,5},12,3},{2,5},{3,4},{4,5},14,6}}
» G =(V,E)

e

-I.I_‘ﬁ

R EEEEEEES LS LSS EEESESEEEEEEEEEEEEEE S ES AR LSS EESEEEE LS LTS

Graph Terminology
Vertex and Edge

« Each node of the graph is represented as a vertex. The labeled circle represents vertices.
Thus, A to D are vertices.

« Edge — Edge represents a path between two vertices or a line between two vertices.

A djacency nodes
« Two nodes or vertices are adjacent if they are connected to each other through an edge. In

the example, B is adjacent to A, C is adjacent to A, and so on.

« In a directed graph some edges may connect to itself then such type of edges are called as a

23—
d\g
(e

« Inthe above figure, (A, A) is a loop.
Undirected Graph and Directed Graph
* Undirected Graph
A Graph that does not contain any direction is called as undirected graph.
* Directed Graph

R

L oop:

loop. This is shown in below.

-l'l.‘ﬁ

A pair of vertices between the edges must be ordered then that graph is known as

directed graph.
Undirected graph (V. E,) Directed graph (V..E.) Easier way to draw
Vv, ={1.2.3} V. ={1.2,3} directed graph (V..E.)
B, =41 202 3}.{3.1}} . ={(1.2).(2.3).(3,2).(1.3)}

Path

« A path in a graph represents a way to get from an origin to a destination by traversing edges
in the graph. For example, in the undirected graph G=(V,E) drawn bhelow, there are many

paths from node 6 to node 1.

Examples:

» The red path above is ((6,4), (4,3), (3,2), (2,5), (5,1)); it is a path in G from node 6 to node 1

-I.I_‘n

Complete graph

» A graph in which every vertex is directly connected to every other vertex.

Weighted Graph

« Some graphs contain weights on their edges, such type of graphs is called as weighted graph
and the number associated with an edge is called as weight.

« The weight of an edge is often referred to as the "cost" of the edge.
« In applications, the weight may be a measure of the length of a route, the capacity of a line,

the energy required to move between locations along a route, etc.

————————————

-l'l.‘ﬁ

In-degree and Out-degree
In-degree of a node:

The In-degree of a node n 1s nothing but the number of edge coming to that node.
Out-Degree of a node:

The out-degree of a node n is nothing but the number of edges that are move away from that

node.
Example:
Vertex | In-Degree | Out-Degree
|
A P | 2
L I
B 1 1
C 1 2
D 2 0
E 0 1
Isolated Node

« In a graph if a node that does not adjacent to any other node then that node is called as an

isolated node.

—————————

-I.I_‘ﬁ

)
J\

« [n the above figure, the node D is an Isolated node.

Null Graph

» The graph containing only isolated nodes is called as a Null graph.

»
W
&
& &
® © -
&
= n=J3 n=4

Cyclic Graph and A cyclic Graph

« A path from a node to itself is called as a cyclic graph. In other words, a graph containing a
cycle in it is called as a cyclic graph.

« The graph does not contain the cycle is called as an acyclic graph and the directed graph that
does not contain any cycle is called as directed acyclic graph.

—————————————

-l'l.‘ﬁ

Cyclic directed graph Acyclic directed graph

C‘]r-l.*.le

."'-.__

R EEEEEEEE LA E AL 2L A R LR RS E R EE R SRR S22 R E R E R EE R E L LS

Graph Representations
Graph data structure is represented using following representations...

1. Adjacency Matrix
2. Incidence Matrix
3. Adjacency List

A djacency Matrix

In this representation, graph can be represented using a maftrix of size fotal number of
vertices by total number of vertices. That means if a graph with 4 vertices can be represented using
a matnix of 4X4 class. In this matnx, rows and columns both represents vertices. This matrix is
filled with either 1 or 0. Here, 1 represents there is an edge from row vertex to column vertex and 0
represents there i1s no edge from row vertex fo column @ vertex.

For example, consider the following undirected graph representation...

A B C D E

Directed graph representation...

0

O-mwnO

Incidence Matrix

-l'l.‘ﬁ

In this representation, graph can be represented using a mafrix of size total number of
vertices by total number of edges. That means if a graph with 4 vertices and 6 edges can be
represented using a matrix of 4X6 class. In this mafnx, rows represents vertices and columns

represents edges.

This matnx is filled with either 0 or 1 or -1. Here, 0 represents row edge is not connected to
column vertex, 1 represents row edge is connected as outgoing edge to column vertex and -1

represents r1ow edge 1s connected as incoming edge fto column vertex.

For example, consider the following directed graph representation...

El E2 E3 E4 E5 E6 E7 ES8

1 1 -1 0 0 0 0 O
-1 0 0 1 0 1 00O
o -1 0 0 1 0 O O
O =]l -1 071 1
o ¢ 0 0 0O -1.-10

Adjacency List

In this representation, every vertex of graph contains list of its adjacent vertices.
For example, consider the following directed graph representation implemented using linked list...

This representation can also be implemented using array as follows..

s m——

Wil

Reference Array—
e

T

PRWUNE=O

Adjacency Array

e R i s R E R LR R R AR AR SRR RS R 2 2R EE S EEE S R EE R E L ST

Spanning Tree

A spanning free is a subset of Graph G, which has all the vertices covered with minimum
possible number of edges. Hence, a spanning tree does not have cycles and it cannot be

disconnected.
)
Graph G
“c .- B
Spanning Trees
A A A
(o < B [B | (C - {B
— Yo L | —_— L L
Graph Traversals

Wi

-I.I‘tl

Graph traversal is technique used for searching a vertex in a graph. The graph traversal is also
used to decide the order of vertices to be visit in the search process. A graph traversal finds the
edges to be used in the search process without creating loops that means using graph traversal we
visit all vertices of graph without getting into looping path.

There are two graph traversal techniques and they are as follows...

1. DFS (Depth First Search)
2. BFS (Breadth First Search)

DFS (Depth First Search)

DFS traversal of a graph, produces a spanning tree as final result. Spanning Treeis a
graph without any loops. We use Stack data structure with maximum size of total number of
vertices in the graph to implement DFS traversal of a graph
We use the following steps to implement DFS traversal...

« Step 1: Define a Stack of size total number of vertices in the graph.

« Step 2: Select any vertex as starting point for traversal. Visit that vertex and push it on to
the Stack.

« Step 3: Visit any one of the adjacent vertex of the vertex which is at top of the stack which

1s not visited and push it on to the stack.
« Step 4: Repeat step 3 until there are no new vertex to be visit from the vertex on top of the

stack.
o Step 5: When there is no new vertex to be visit then use back tracking and pop one vertex
from the stack.

« Step 6: Repeat steps 3, 4 and 5 until stack becomes Empty.
« Step 7: When stack becomes Empty, then produce final spanning tree by removing unused

edges from the graph

Back tracking is coming back to the vertex from which we came to current vertex.

ﬂi

-l'l.‘ﬁ

Consider the following example graph to perform DFS traversal

Step 1:
- Select the vertex A as starting point (visit A).
- Push A on to the Stack.

Step 2:
- Visit any adjacent vertex of A which is not visited (B).
- Push newly visited vertex B on to the Stack.
D E
Step 3:

- Visit any adjacent vertext of B which is not visited (C).
- Push C on to the 5Stack.

=

Wil

Step 4:
- Visit any adjacent vertext of C which is not visited (E).
- Push E on to the Stack
B
A

Stack

Step 5:
- Visit any adjacent vertext of E which i1s not visited (D).

- Push D on to the Stack

duamn

Stack
Step 6:
- There is no new vertiex to be visited from D. So use back track. |
- Pop D from the Stack.
E
C
B
A
Stack
Step 7:
- Visit any adjacent vertex of E which is not visited (F).
- Push F on to the Stack.
F
E
C
B
A
Stack

Wil

Step B8:
- Visit any adjacent vertex of F which is not visited (G).

- Push G on to the 5tack.

Step 9:
- There is no new vertiex to be visited from G. So use back track.
- Pop G from the 5tack.

8

Step 10:
- There is no new vertiex to be visited from F. So use back track.
- Pop F from the Stack.

Step 11:
- There is no new vertiex to be visited from E. So use back track.
- Pop E from the Stack.

-l'l.‘ﬁ

Step 12:
- There is no new vertiex to be visited from C. So use back track.
- Pop C from the Stack.
B
A

Stack
Step 13:
- There is no new vertiex to be visited from B. So use back track.
- Pop B from the Stack.
A ol
Stack
Step 14:
- There is no new vertiex to be visited from A. So use back track.
- Pop A from the Stack.
Stack

-I.I_‘n

- Stack became Empty. So stop DFS Treversal.
- Final result of DFS traversal is following spanning tree.

o 2 ok o ok o s ok ok ok ke e ok ok ok e ok i e ol ol e e e ok ok de e e ofe o sk e o ok ok ok ok ok ook ok ok ok sk ko e i sk sk e ol ok sk e ok e i e ol ol ke ok e ofe ok ok ke

BFS (Breadth First Search)

BFS ftraversal of a graph, produces a spanning tree as final result. Spanning Tree is a
graph without any loops. We use Queue data structure with maximum size of total number of
vertices in the graph to implement BFS traversal of a graph

We use the following steps to implement BFS traversal...

« Step 1: Define a Queue of size total number of vertices in the graph.

o Step 2: Select any vertex as starting point for traversal. Visit that vertex and insert it into
the Queue.

« Step 3: Visit all the adjacent vertices of the verex which is at front of the Queue which is
not visited and insert them into the Queue.

« Step 4: When there 1s no new vertex to be visit from the vertex at front of the Queue then

delete that vertex from the Queue.
« Step 5: Repeat step 3 and 4 until queue becomes empty.

ﬂi

-l'l.‘ﬁ

e Step 6: When queue becomes Empty, then produce final spanning tree by removing unused
edges from the graph

Example

Consider the following example graph to perform BFS traversal

Step 1:
- Select the vertex A as starting point (visit A).
- Insert A into the Queue.,

Step 2:
- Visit all adjacent vertices of A which are not visited (D, E, B).
- Insert newly visited vertices into the Queue and delete A from the Queue..

= C

Queue

ﬁi

Wil

Step 3:
- Visit all adjacent vertices of D which are not visited (there is no vertex).
- Delete D from the Queue.

C

Queue

Step 4.
- Visit all adjacent vertices of E which are not visited (C, F).
- Insert newly visited vertices into the Queue and delete E from the Queue.

Queue

| [[[efefr] |

Step 5:
- Visit all adjacent vertices of B which are not visited (there is no vertex).
- Delete B from the Queue.

Queue

L L] fe]e]]

Step 6:
- Visit all adjacent vertices of € which are not visited (G).
- Insert newly visited vertex into the Queue and delete € from the Queue.

Queue

[[[[[[¢]s]
I E—

Wil

Step 7:
- Visit all adjacent vertices of F which are not visited (there is no vertex).
- Delete F from the Queue.

Queue

L[LT T s

Step 8:
- Visit all adjacent vertices of G which are not visited (there is no vertex).
- Delete G from the Queue.

Queue

HEEP™ NN

- Queue became Empty. So, stop the BFS process.
- Final result of BFS is a Spanning Tree as shown below...

EEEEEEEEE R SR R E S SRR R AR SRR SRS R s RS E LSS E R EE SR L 2
Define Spanning Tree and explain minimum spanning tree algorithms

Spanning Tree

ﬂi

-l'l.‘ﬁ

« A spanning tree is a subset of Graph G, which has all the vertices covered with minimum
possible number of edges. Hence, a spanning tree does not have cycles and it cannot be

A
Graph% \
C { B

Spanning Trees

c B | & B (¢ B
S o — - i " o

We found three spanning trees off one complete graph. A complete undirected graph can

have maximum n™? number of spanning trees, where n is the number of nodes. In the above

disconnected.

example, 3** = 3 spanning trees are possible.
Properties of Spanning Tree:

1. A connected graph G can have more than one spanning tree.

2. Each pair of nodes in the spanning trees should possess single path.

3. All possible spanning trees of graph G have the same number of edges and vertices.

4. Spanning tree has n-1 edges, where n is the number of nodes (vertices).

5. From a complete graph, by removing maximum e - n + 1 edge, we can construct a spanning
tree.

6. A complete graph can have maximum n™? number of spanning trees.

7. The spanning tree does not have any cycle (loops).

Wi

-I.I_‘n

8. Removing one edge from the spanning tree will make the graph disconnected, i.e. the
spanning tree is minimally connected.
9. Adding one edge to the spanning tree will create a circuit or loop, 1.e. the spanning tree is

maximally acyclic.
A pplication of Spanning Tree

Spanning tree is basically used to find a minimum path to connect all nodes in a graph.

Common applications of spanning trees are

« Civil Network Planning

« Computer Network Routing Protocol
o Cluster Analysis

Let us understand this through a small example. Consider, city network as a huge graph and
now plans to deploy telephone lines in such a way that in minimum lines we can connect to all city

nodes. This is where the spanning tree comes into picture.

Minimum Spanning Tree (MST):

« In a weighted graph, a minimum spanning tree is a spanning tree that has minimum weight
than all other spanning trees of the same graph.
« In real-world situations, this weight can be measured as distance, traffic load or any

arbitrary value denoted to the edges.
g
[' A B

8 @ : @ 2 o— ".':_’.fffz

Wil

Minimum Spanning-Tree Algorithm
There are two famous algorithms for finding the Minimum Spanning Tree:

» Kruskal's Algorithm
« Prim's Algorithm

Kruskal's Algorithm

Kruskal’s Algorithm builds the spanning tree by adding edges one by one into a growing
spanning tree. Kruskal's algorithm follows greedy approach as in each iteration it finds an edge
which has least weight and add it to the growing spanning tree.

A lgorithm Steps:

« Sort the graph edges with respect to their weights.
« Start adding edges to the MST from the edge with the smallest weight until the edge of the

largest weight.
« Only add edges which doesn't form a cycle , edges which connect only disconnected

components.

To understand Kruskal's algorithm let us consider the following example —

. A B
¥ | "'-.".-"'I L
5 Z T
N/ N/
- c D
o

Step 1 - Remove all loops and Parallel Edges

ﬂi

Wil

Remove all loops and parallel edges from the given graph.

g
A . B)
7 S " 5
S 3 N g
| S
3!
C D

Step 2 - Arrange all edges in their increasing order of weight

The next step is to create a set of edges and weight, and arrange them in an ascending order

of weight (cost).

B,.D | DT | AC | GD |IGBAiBTricAB H&A ¢ §06

2 2 3 3 4 2 6 7 8

Step 3 - Add the edge which has the least weightage

Now we start adding edges to the graph beginning from the one which has the least weight.
Throughout, we shall keep checking that the spanning properties remain intact. In case, by adding

ﬂi

Wil

one edge, the spanning tree property does not hold then we shall consider not to include the edge in
the graph.

]

A @5
7 N N 5
4
'.5' 3 |T
S 2/_/
8 . 2
C D

(
(

The least cost is 2 and edges involved are B,D and D, T. We add them. Adding them does

not violate spanning tree properties, so we continue to our next edge selection.

Next cost 1s 3, and associated edges are A,C and C.D. We add them again —

Next cost in the table is 4, and we observe that adding it will create a circuit in the graph. —

o

We ignore it. In the process we shall ignore/avoid all edges that create a circuit.

Wi

Wil

o

(
G

o] | B |
] p— P
\3{) 3 2 b
. L //
C 1 D
o/ 3 oo/

Now we are left with only one node to be added. Between the two least cost edges available
7 and 8, we shall add the edge with cost 7.

. fﬂ
A -5
% RO
l_;i'_‘. 3 2 //J
2
C . D
S 3)

By adding edge S,A we have included all the nodes of the graph and we now have minimum

cost spanning tree.

e E SRS E e s AR R R R R R S LR R RS R R E LR L2 A E RS EE R E S E L S

Prim’s algorithm

25

Wil

Prim’s algorithm is also a Greedy algorithm. It starts with an empty spanning tree. The idea
is to maintain two sets of vertices. The first set contains the vertices already included in the MST,

the other set contains the vertices not yet included.

At every step, it considers all the edges that connect the two sets, and picks the minimum
weight edge from these edges. A fter picking the edge, it moves the other endpoint of the edge to the
set containing MST.

Prim’s Procedure

« [Initialize the min priority queue Q to contain all the vertices.

» Set the key of each vertex to oo and root’s key is set to zero

« Set the parent of root to NIL
« If weight of vertex is less than key value of the vertex, connect the graph.

« Repeat the process till all vertex are used.

To contrast with Kruskal's algorithm and to understand Prim's algorithm better, we shall use

the same example —

9
. A B
N e’ 5
.-'i‘
S 9 2 =
S e’
E D | .
I

Step 1 - Remove all loops and parallel edges

ﬂi

Wil

r N N/
| 5 | T i
o N
& D)
o/ \—

Remove all loops and parallel edges from the given graph. In case of parallel edges, keep

the one which has the least cost associated and remove all others.

Step 2 - Choose any arbitrary node as root node

In this case, we choose S node as the root node of Pnm's spanning tree. This node is

arbitrarily chosen, so any node can be the root node.
Step 3 - Check outgoing edges and select the one with less cost

A fter choosing the root node S, we see that S,A and S,C are two edges with weight 7 and 8,
respectively. We choose the edge S,A as it is lesser than the other.

ﬁi

Wil

"J

(.

N

Now, the tree S-7-A is treated as one node and we check for all edges going out from it. We

select the one which has the lowest cost and include it in the tree.

A fter this step, S-7-A-3-C tree is formed. Now we'll again treat it as a node and will check
all the edges again. However, we will choose only the least cost edge. In this case, C-3-D is the new
edge, which is less than other edges' cost 8, 6, 4, etc.

A [B
7 S’)
4
S | 3 2 (' T
L
o) 2
C —1 ' D

A fter adding node D to the spanning tree, we now have two edges going out of it having the
same cost, 1.e. D-2-T and D-2-B. Thus, we can add either one. But the next step will again yield

edge 2 as the least cost. Hence, we are showing a spanning tree with both edges included.

Wi

Wil

S 3 2 T
L Mt
™
C D
N 3 N

We may find that the output spanning tree of the same graph using two different algorithms is same.

Wi

